Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs

Abstract

Transcription factor IIIA (TFIIIA) is required for eukaryotic synthesis of 5S ribosomal RNA by RNA polymerase III. Here we report the discovery of a structured RNA element with clear resemblance to 5S rRNA that is conserved within TFIIIA precursor mRNAs from diverse plant lineages. TFIIIA protein expression is controlled by alternative splicing of the exon containing the plant 5S rRNA mimic (P5SM). P5SM triggers exon skipping upon binding of ribosomal protein L5, a natural partner of 5S rRNA, which demonstrates the functional adaptation of its structural mimicry. As the exon-skipped splice product encodes full-length TFIIIA protein, these results reveal a ribosomal protein–mRNA interaction that is involved in 5S rRNA synthesis and has implications for cross-coordination of ribosomal components. This study also provides insight into the origin and function of a newfound class of structured RNA that regulates alternative splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A conserved structured RNA element in plants resembles 5S rRNA.
Figure 2: The cassette exon containing the plant 5S rRNA mimic shows regulated alternative splicing and yields two splice products giving different gene expression.
Figure 3: Ribosomal protein L5 specifically increases TFIIIA gene expression by promoting splice product I formation.
Figure 4: GST-L5 fusion protein binds to P5SM RNA in vitro.
Figure 5: The P2 stem of P5SM RNA is critical for binding to GST-L5 in vitro, and disruption of L5 binding abolishes regulation of splicing in vivo.
Figure 6: The constitutive splicing patterns of deregulated mutants reveal that P5SM is involved in both exon definition and skipping, leading to a proposed model for regulation of TFIIIA pre-mRNA splicing.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

References

  1. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  Google Scholar 

  2. Wang, B.B. & Brendel, V. Genomewide comparative analysis of alternative splicing in plants. Proc. Natl. Acad. Sci. USA 103, 7175–7180 (2006).

    Article  CAS  Google Scholar 

  3. Buratti, E. & Baralle, F.E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol. 24, 10505–10514 (2004).

    Article  CAS  Google Scholar 

  4. Hiller, M., Zhang, Z., Backofen, R. & Stamm, S. Pre-mRNA secondary structures influence exon recognition. PLoS Genet. 3, e204 (2007).

    Article  Google Scholar 

  5. Buckanovich, R.J. & Darnell, R.B. The neuronal RNA binding protein Nova-1 recognizes specific RNA targets in vitro and in vivo. Mol. Cell. Biol. 17, 3194–3201 (1997).

    Article  CAS  Google Scholar 

  6. Blanchette, M. & Chabot, B. A highly stable duplex structure sequesters the 5′ splice site region of hnRNP A1 alternative exon 7B. RNA 3, 405–419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ehresmann, C. et al. Molecular mimicry in translational regulation: the case of ribosomal protein S15. RNA Biol. 1, 66–73 (2004).

    Article  CAS  Google Scholar 

  8. Merianos, H.J., Wang, J. & Moore, P.B. The structure of a ribosomal protein S8/spc operon mRNA complex. RNA 10, 954–964 (2004).

    Article  CAS  Google Scholar 

  9. Chao, J.A. & Williamson, J.R. Joint x-ray and NMR refinement of the yeast L30e-mRNA complex. Structure 12, 1165–1176 (2004).

    Article  CAS  Google Scholar 

  10. Vilardell, J., Chartrand, P., Singer, R.H. & Warner, J.R. The odyssey of a regulated transcript. RNA 6, 1773–1780 (2000).

    Article  CAS  Google Scholar 

  11. Cheah, M.T., Wachter, A., Sudarsan, N. & Breaker, R.R. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447, 497–500 (2007).

    Article  CAS  Google Scholar 

  12. Wachter, A. et al. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19, 3437–3450 (2007).

    Article  CAS  Google Scholar 

  13. Kubodera, T. et al. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett. 555, 516–520 (2003).

    Article  CAS  Google Scholar 

  14. Sudarsan, N., Barrick, J.E. & Breaker, R.R. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9, 644–647 (2003).

    Article  CAS  Google Scholar 

  15. Bocobza, S. et al. Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev. 21, 2874–2879 (2007).

    Article  CAS  Google Scholar 

  16. Croft, M.T., Moulin, M., Webb, M.E. & Smith, A.G. Thiamine biosynthesis in algae is regulated by riboswitches. Proc. Natl. Acad. Sci. USA 104, 20770–20775 (2007).

    Article  CAS  Google Scholar 

  17. Nishihara, H., Smit, A.F. & Okada, N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 16, 864–874 (2006).

    Article  CAS  Google Scholar 

  18. Kapitonov, V.V. & Jurka, J. A novel class of SINE elements derived from 5S rRNA. Mol. Biol. Evol. 20, 694–702 (2003).

    Article  CAS  Google Scholar 

  19. Kalendar, R. et al. Cassandra retrotransposons carry independently transcribed 5S RNA. Proc. Natl. Acad. Sci. USA 105, 5833–5838 (2008).

    Article  CAS  Google Scholar 

  20. Wolffe, A.P. The role of transcription factors, chromatin structure and DNA replication in 5S RNA gene regulation. J. Cell Sci. 107, 2055–2063 (1994).

    CAS  PubMed  Google Scholar 

  21. Rogers, S.O. & Bendich, A.J. Ribosomal RNA genes in plants—variability in copy number and in the intergenic spacer. Plant Mol. Biol. 9, 509–520 (1987).

    Article  CAS  Google Scholar 

  22. Douet, J. & Tourmente, S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity 99, 5–13 (2007).

    Article  CAS  Google Scholar 

  23. Andrews, M.T. & Brown, D.D. Transient activation of oocyte 5S RNA genes in Xenopus embryos by raising the level of the trans-acting factor TFIIIA. Cell 51, 445–453 (1987).

    Article  CAS  Google Scholar 

  24. Yao, Z., Weinberg, Z. & Ruzzo, W.L. CMfinder—a covariance model based RNA motif finding algorithm. Bioinformatics 22, 445–452 (2006).

    Article  CAS  Google Scholar 

  25. Soukup, G.A. & Breaker, R.R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5, 1308–1325 (1999).

    Article  CAS  Google Scholar 

  26. Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, D121–D124 (2005).

    Article  CAS  Google Scholar 

  27. Mathieu, O. et al. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Res. 31, 2424–2433 (2003).

    Article  CAS  Google Scholar 

  28. Pieler, T. & Theunissen, O. TFIIIA: nine fingers—three hands? Trends Biochem. Sci. 18, 226–230 (1993).

    Article  CAS  Google Scholar 

  29. Yoine, M., Ohto, M.A., Onai, K., Mita, S. & Nakamura, K. The lba1 mutation of UPF1 RNA helicase involved in nonsense-mediated mRNA decay causes pleiotropic phenotypic changes and altered sugar signalling in Arabidopsis. Plant J. 47, 49–62 (2006).

    Article  CAS  Google Scholar 

  30. Szymanski, M., Barciszewska, M.Z., Erdmann, V.A. & Barciszewski, J. 5S rRNA: structure and interactions. Biochem. J. 371, 641–651 (2003).

    Article  CAS  Google Scholar 

  31. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  32. Scripture, J.B. & Huber, P.W. Analysis of the binding of Xenopus ribosomal protein L5 to oocyte 5S ribosomal RNA—the major determinants of recognition are located in helix III-loop C. J. Biol. Chem. 270, 27358–27365 (1995).

    Article  CAS  Google Scholar 

  33. Zengel, J.M. & Lindahl, L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog. Nucleic Acid Res. Mol. Biol. 47, 331–370 (1994).

    Article  CAS  Google Scholar 

  34. Nomura, M., Yates, J.L., Dean, D. & Post, L.E. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc. Natl. Acad. Sci. USA 77, 7084–7088 (1980).

    Article  CAS  Google Scholar 

  35. McIntosh, K.B. & Bonham-Smith, P.C. Ribosomal protein gene regulation: what about plants? Can. J. Bot. 84, 342–362 (2006).

    Article  CAS  Google Scholar 

  36. Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).

    Article  CAS  Google Scholar 

  37. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    Article  CAS  Google Scholar 

  38. Cloix, C., Yukawa, Y., Tutois, S., Sugiura, M. & Tourmente, S. In vitro analysis of the sequences required for transcription of the Arabidopsis thaliana 5S rRNA genes. Plant J. 35, 251–261 (2003).

    Article  CAS  Google Scholar 

  39. McBryant, S.J. et al. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5S ribosomal RNA. J. Mol. Biol. 248, 44–57 (1995).

    Article  CAS  Google Scholar 

  40. Staiger, D., Zecca, L., Wieczorek Kirk, D.A., Apel, K. & Eckstein, L. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. Plant J. 33, 361–371 (2003).

    Article  CAS  Google Scholar 

  41. Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J. & Soret, J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J. 20, 1785–1796 (2001).

    Article  CAS  Google Scholar 

  42. Pittman, R.H., Andrews, M.T. & Setzer, D.R. A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein. J. Biol. Chem. 274, 33198–33201 (1999).

    Article  CAS  Google Scholar 

  43. Li, B., Vilardell, J. & Warner, J.R. An RNA structure involved in feedback regulation of splicing and of translation is critical for biological fitness. Proc. Natl. Acad. Sci. USA 93, 1596–1600 (1996).

    Article  CAS  Google Scholar 

  44. House, A.E. & Lynch, K.W. Regulation of alternative splicing: more than just the ABCs. J. Biol. Chem. 283, 1217–1221 (2008).

    Article  CAS  Google Scholar 

  45. Egoavil, C., Marton, H.A., Baynton, C.E., McCullough, A.J. & Schuler, M.A. Structural analysis of elements contributing to 5′ splice site selection in plant pre-mRNA transcripts. Plant J. 12, 971–980 (1997).

    Article  CAS  Google Scholar 

  46. Reddy, A.S. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu. Rev. Plant Biol. 58, 267–294 (2007).

    Article  CAS  Google Scholar 

  47. Sudarsan, N. et al. Tandem riboswitch architectures exhibit complex gene control functions. Science 314, 300–304 (2006).

    Article  CAS  Google Scholar 

  48. Weinberg, Z. et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res. 35, 4809–4819 (2007).

    Article  CAS  Google Scholar 

  49. Hofgen, R. & Willmitzer, L. Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum). Plant Sci. 66, 221–230 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Corbino, K. Leppek and A. Westermann for technical assistance, Z. Weinberg for advice on bioinformatics, E. Puerta-Fernandez for advice on gel-shift assays and A. Roth for critical reading of the manuscript. M.C.H. is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and A.W. was supported by the German Research Foundation while in the Breaker laboratory. The research was supported by a grant from the US National Institutes of Health (GM068819). RNA science in the Breaker laboratory also is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.C.H. conceived of and led project, performed bioinformatics analysis, designed and carried out in vitro structural probing and binding experiments, and wrote the manuscript. A.W. designed and carried out RT-PCR and qRT-PCR analyses and in vivo reporter assays, and edited the manuscript. R.R.B. advised on the project and edited the manuscript. All authors contributed to discussions regarding the data and their interpretation.

Corresponding author

Correspondence to Ronald R Breaker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Table 1, Supplementary Methods (PDF 8796 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, M., Wachter, A. & Breaker, R. A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs. Nat Struct Mol Biol 16, 541–549 (2009). https://doi.org/10.1038/nsmb.1588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing