Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The splicing factor SC35 has an active role in transcriptional elongation

Abstract

Mounting evidence suggests that transcription and RNA processing are intimately coupled in vivo, although each process can occur independently in vitro. It is generally thought that polymerase II (Pol II) C-terminal domain (CTD) kinases are recruited near the transcription start site to overcome initial Pol II pausing events, and that stably bound kinases facilitate productive elongation and co-transcriptional RNA processing. Whereas most studies have focused on how RNA processing machineries take advantage of the transcriptional apparatus to efficiently modify nascent RNA, here we report that a well-studied splicing factor, SC35, affects transcriptional elongation in a gene-specific manner. SC35 depletion induces Pol II accumulation within the gene body and attenuated elongation, which are correlated with defective P-TEFb (a complex composed of CycT1–CDK9) recruitment and dramatically reduced CTD Ser2 phosphorylation. Recombinant SC35 is sufficient to rescue this defect in nuclear run-on experiments. These findings suggest a reciprocal functional relationship between the transcription and splicing machineries during gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SR proteins are required for Pol II transcription in MEFs.
Figure 2: Induced Pol II accumulation in gene bodies in response to SC35 depletion in vivo.
Figure 3: Requirement for SC35 in transcription elongation.
Figure 4: Functional rescue of SC35 depletion–induced blockage of transcriptional elongation.
Figure 5: Dynamic and SC35-dependent recruitment of P-TEFb to the elongating Pol II complex.
Figure 6: Proposed model for the role of SR proteins in transcriptional elongation and co-transcriptional RNA splicing.

Similar content being viewed by others

References

  1. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Pandit, S., Wang, D. & Fu, X.-D. Functional integration of transcriptional and RNA processing machineries. Curr. Opin. Cell Biol. 20, 260–265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lacadie, S.A., Tardiff, D.F., Kadener, S. & Rosbash, M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 20, 2055–2066 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lacadie, S.A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast. Mol. Cell 19, 65–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gornemann, J., Kotovic, K.M., Hujer, K. & Neugebauer, K.M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53–63 (2005).

    Article  PubMed  Google Scholar 

  6. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Bres, V., Gomes, N., Pickle, L. & Jones, K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 19, 1211–1226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das, R. et al. Functional coupling of RNAP II transcription to spliceosome assembly. Genes Dev. 20, 1100–1109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Howe, K.J., Kane, C.M. & Ares, M. Jr. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9, 993–1006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Fong, N., Bird, G., Vigneron, M. & Bentley, D.L. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J. 22, 4274–4282 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ni, Z., Schwartz, B.E., Werner, J., Suarez, J.R. & Lis, J.T. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell 13, 55–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Sims, R.J. III, Belotserkovskaya, R. & Reinberg, D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18, 2437–2468 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Lis, J.T., Mason, P., Peng, J., Price, D.H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Brien, T., Hardin, S., Greenleaf, A. & Lis, J.T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370, 75–77 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Komarnitsky, P., Cho, E.J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fong, Y.W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Yan, D. et al. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol. Cell. Biol. 18, 5000–5009 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albers, M., Diment, A., Muraru, M., Russell, C.S. & Beggs, J.D. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA 9, 138–150 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Z., Licklider, L.J., Gygi, S.P. & Reed, R. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, H.J. et al. mRNA capping enzyme activity is coupled to an early transcription elongation. Mol. Cell. Biol. 24, 6184–6193 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schroeder, S.C., Zorio, D.A., Schwer, B., Shuman, S. & Bentley, D. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol. Cell 13, 377–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Mandal, S.S. et al. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc. Natl. Acad. Sci. USA 101, 7572–7577 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, S. & Fu, X.-D. SR Proteins and related factors in alternative splicing. in Alternative Splicing in the Postgenomic Era. vol. 623 107–122 (eds. Blencowe, B. & Graveley, G.) (Eurekah Bioscience, New York, NY, 2007).

    Chapter  Google Scholar 

  30. Fu, X.D. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365, 82–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, J., Takagaki, Y. & Manley, J.L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10, 2588–2599 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, S., Xiao, R., Sun, P., Xu, X. & Fu, X.D. Dephosphorylation-dependent sorting of SR splicing factors during mRNP maturation. Mol. Cell 20, 413–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, R. et al. Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol. Cell. Biol. 27, 5393–5402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding, J.H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lemaire, R. et al. Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins. Genes Dev. 16, 594–607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J., Xiao, S.H. & Manley, J.L. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12, 2222–2233 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blanchette, M., Green, R.E., Brenner, S.E. & Rio, D.C. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev. 19, 1306–1314 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, X.D. & Maniatis, T. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343, 437–441 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Kwon, Y.S. et al. Sensitive ChIP-DSL technology reveals an extensive estrogen receptor α-binding program on human gene promoters. Proc. Natl. Acad. Sci. USA 104, 4852–4857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Turner, B.M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Sims, R.J. III, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Greenberg, M.E. & Bender, T.P. Identification of newly transcribed RNA. Curr. Protoc. Mol. Biol. 4, 10.1–10.7 (2007).

    Google Scholar 

  44. Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Misteli, T. & Spector, D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3, 697–705 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Das, R. et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol. Cell 26, 867–881 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Fujinaga, K. et al. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol. Cell. Biol. 24, 787–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamada, T. et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21, 227–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Cho, E.J., Kobor, M.S., Kim, M., Greenblatt, J. & Buratowski, S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Champlin, D.T., Frasch, M., Saumweber, H. & Lis, J.T. Characterization of a Drosophila protein associated with boundaries of transcriptionally active chromatin. Genes Dev. 5, 1611–1621 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Champlin, D.T. & Lis, J.T. Distribution of B52 within a chromosomal locus depends on the level of transcription. Mol. Biol. Cell 5, 71–79 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Y. & Steitz, J.A. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Weber, M.J. & Rubin, H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J. Cell. Physiol. 77, 157–168 (1971).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Q. Zhou (Univeristy of California, Berkeley) and K. Jones (The Salk Institute) for advice, reporter plasmids and antibodies, K. Hertel (University of California, Irvine) for recombinant 9G8 and J. Hagopian (University of California, San Diego) for recombinant SF2/ASF. We thank M. Ares (University of California, Santa Cruz), B. Hamilton (University of California, San Diego), C. Glass (University of California, San Diego) and M.G. Rosenfeld (University of California, San Diego) for critical reading of the manuscript. This work was supported by a US National Institutes of Health (NIH) postdoctoral fellowship to G.C.-M. (1F32 GM077907) and NIH grants to X.-D.F. (5RO1 GM49369).

Author information

Authors and Affiliations

Authors

Contributions

X.-D.F. and S.L. designed the experiment; S.L. developed the modified nuclear run-on assay and performed most initial experiments; G.C.-M. repeated most experiments; D.W. performed the ChIP-DSL analysis; S.P. contributed to analysis of nascent RNA; all authors participated in writing the paper.

Corresponding author

Correspondence to Xiang-Dong Fu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Coutinho-Mansfield, G., Wang, D. et al. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 15, 819–826 (2008). https://doi.org/10.1038/nsmb.1461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing