Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MukB acts as a macromolecular clamp in DNA condensation

Abstract

Correct folding of the chromosome into its highly ordered structure requires the action of condensins. The multisubunit condensins are highly conserved from bacteria to humans, and at their core they contain the characteristic V-shaped dimer of structural maintenance of chromosome proteins. The mechanism of DNA rearrangements by condensins remains unclear. Using magnetic tweezers, we show that bacterial condensin MukB acts as an ATP-modulated macromolecular assemblage in DNA condensation. Condensation occurs in a highly cooperative manner, resulting in the formation of force-resilient clusters. ATP regulates nucleation but not propagation of the clusters and seems to play a structural role. MukB clusters can further interact with each other, thereby bringing distant DNA segments together. The resulting activity has not previously been described among DNA-remodeling machines and may explain how the protein can organize the global structure of the chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP-independent DNA condensation by MukB.
Figure 2: Single steps in DNA condensation and decondensation.
Figure 3: DNA extension during repeated stretch-release cycles of MukB–DNA complex.
Figure 4: Progressive DNA condensation by MukB yields increasingly more resilient complexes.
Figure 5: Condensation occurs cooperatively and is stimulated by ATP.
Figure 6: The web-of-clamps model of chromatin organization.

Similar content being viewed by others

References

  1. Pettijohn, D.E. The nucleoid. in Escherichia coli and Salmonella typhimurium (ed. Neidhardt, F.C.) (ASM Press, Washington, DC, 1996).

    Google Scholar 

  2. Johnson, R.C., Johnson, L.M., Schmidt, J.W. & Gardner, J.F. Major nucleoid proteins in the structure and function of the Escherichia coli chromosome. in The Bacterial Chromosome (ed. Higgins, N.P.) 65–132 (ASM Press, Washington, DC, 2005).

    Chapter  Google Scholar 

  3. Paulson, J.R. & Laemmli, U.K. The structure of histone-depleted metaphase chromosomes. Cell 12, 817–828 (1977).

    Article  CAS  Google Scholar 

  4. Kavenoff, R. & Bowen, B.C. Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59, 89–101 (1976).

    Article  CAS  Google Scholar 

  5. Poirier, M.G. & Marko, J.F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl. Acad. Sci. USA 99, 15393–15397 (2002).

    Article  CAS  Google Scholar 

  6. Hirano, T. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  7. Nasmyth, K. & Haering, C.H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    Article  CAS  Google Scholar 

  8. Gassmann, R., Vagnarelli, P., Hudson, D. & Earnshaw, W.C. Mitotic chromosome formation and the condensin paradox. Exp. Cell Res. 296, 35–42 (2004).

    Article  CAS  Google Scholar 

  9. Cobbe, N. & Heck, M.M. The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21, 332–347 (2004).

    Article  CAS  Google Scholar 

  10. Hiraga, S. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34, 21–59 (2000).

    Article  CAS  Google Scholar 

  11. Saitoh, N., Goldberg, I. & Earnshaw, W.C. The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 17, 759–766 (1995).

    Article  CAS  Google Scholar 

  12. Huang, C.E., Milutinovich, M. & Koshland, D. Rings, bracelet or snaps: fashionable alternatives for SMC complexes. Phil. Trans. R. Soc. Lond. B 360, 537–542 (2005).

    Article  CAS  Google Scholar 

  13. Melby, T.E., Ciampaglio, C.N., Briscoe, G. & Erickson, H.P. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142, 1595–1604 (1998).

    Article  CAS  Google Scholar 

  14. Anderson, D.E., Losada, A., Erickson, H.P. & Hirano, T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156, 419–424 (2002).

    Article  CAS  Google Scholar 

  15. Matoba, K., Yamazoe, M., Mayanagi, K., Morikawa, K. & Hiraga, S. Comparison of MukB homodimer versus MukBEF complex molecular architectures by electron microscopy reveals a higher-order multimerization. Biochem. Biophys. Res. Commun. 333, 694–702 (2005).

    Article  CAS  Google Scholar 

  16. Hopfner, K.P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).

    Article  CAS  Google Scholar 

  17. Lammens, A., Schele, A. & Hopfner, K.P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778–1782 (2004).

    Article  CAS  Google Scholar 

  18. Haering, C.H. et al. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15, 951–964 (2004).

    Article  CAS  Google Scholar 

  19. de Jager, M. et al. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129–1135 (2001).

    Article  CAS  Google Scholar 

  20. Hirano, M., Anderson, D.E., Erickson, H.P. & Hirano, T. Bimodal activation of SMC ATPase by intra- and inter-molecular interactions. EMBO J. 20, 3238–3250 (2001).

    Article  CAS  Google Scholar 

  21. Kimura, K. & Hirano, T. Dual roles of the 11S regulatory subcomplex in condensin functions. Proc. Natl. Acad. Sci. USA 97, 11972–11977 (2000).

    Article  CAS  Google Scholar 

  22. Yamazoe, M. et al. Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J. 18, 5873–5884 (1999).

    Article  CAS  Google Scholar 

  23. Petrushenko, Z.M., Lai, C.H. & Rybenkov, V.V. Antagonistic interactions of kleisins and DNA with bacterial condensin MukB. J. Biol. Chem. 281, 34208–34217 (2006).

    Article  CAS  Google Scholar 

  24. Schleiffer, A. et al. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11, 571–575 (2003).

    Article  CAS  Google Scholar 

  25. Yoshimura, S.H. et al. Condensin architecture and interaction with DNA. Regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. 12, 508–513 (2002).

    Article  CAS  Google Scholar 

  26. Saitoh, N., Goldberg, I.G., Wood, E.R. & Earnshaw, W.C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J. Cell Biol. 127, 303–318 (1994).

    Article  CAS  Google Scholar 

  27. Wang, Q., Mordukhova, E.A., Edwards, A.L. & Rybenkov, V.V. Chromosome condensation in the absence of the non-SMC subunits of MukBEF. J. Bacteriol. 188, 4431–4441 (2006).

    Article  CAS  Google Scholar 

  28. Hudson, D.F., Vagnarelli, P., Gassmann, R. & Earnshaw, W.C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323–336 (2003).

    Article  CAS  Google Scholar 

  29. Maeshima, K. & Laemmli, U.K. A two-step scaffolding model for mitotic chromosome assembly. Dev. Cell 4, 467–480 (2003).

    Article  CAS  Google Scholar 

  30. Konig, P., Braunfeld, M.B., Sedat, J.W. & Agard, D.A. The three-dimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116, 349–372 (2007).

    Article  Google Scholar 

  31. She, W., Wang, Q., Mordukhova, E.A. & Rybenkov, V.V. MukEF is required for stable association of MukB with the chromosome. J. Bacteriol. 189, 7062–7068 (2007).

    Article  CAS  Google Scholar 

  32. Freeman, L., Aragon-Alcaide, L. & Strunnikov, A. The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J. Cell Biol. 149, 811–824 (2000).

    Article  CAS  Google Scholar 

  33. Lindow, J.C., Kuwano, M., Moriya, S. & Grossman, A.D. Subcellular localization of the Bacillus subtilis structural maintenance of chromosomes (SMC) protein. Mol. Microbiol. 46, 997–1009 (2002).

    Article  CAS  Google Scholar 

  34. Kimura, K., Rybenkov, V., Crisona, N., Hirano, T. & Cozzarelli, N. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248 (1999).

    Article  CAS  Google Scholar 

  35. Petrushenko, Z.M., Lai, C.H., Rai, R. & Rybenkov, V.V. DNA reshaping by MukB. Right-handed knotting, left-handed supercoiling. J. Biol. Chem. 281, 4606–4615 (2006).

    Article  CAS  Google Scholar 

  36. Stray, J.E., Crisona, N.J., Belotserkovskii, B.P., Lindsley, J.E. & Cozzarelli, N.R. The Saccharomyces cerevisiae SMC2/4 condensin compacts DNA into (+) chiral structures without net supercoiling. J. Biol. Chem. 280, 34723–34734 (2005).

    Article  CAS  Google Scholar 

  37. Strick, T.R., Kawaguchi, T. & Hirano, T. Real-time detection of single-molecule DNA compaction by condensin I. Curr. Biol. 14, 874–880 (2004).

    Article  CAS  Google Scholar 

  38. Hirano, T., Kobayashi, R. & Hirano, M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E, and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).

    Article  CAS  Google Scholar 

  39. Krasnow, M.A. & Cozzarelli, N.R. Catenation of DNA rings by topoisomerases: mechanism of control by spermidine. J. Biol. Chem. 257, 2687–2693 (1982).

    CAS  PubMed  Google Scholar 

  40. Shaw, S.Y. & Wang, J.C. Knotting of a DNA chain during ring closure. Science 260, 533–536 (1993).

    Article  CAS  Google Scholar 

  41. Rybenkov, V.V., Vologodskii, A.V. & Cozzarelli, N.R. The effect of ionic conditions on DNA helical repeat, effective diameter, and free energy of supercoiling. Nucleic Acids Res. 25, 1412–1418 (1997).

    Article  CAS  Google Scholar 

  42. Niki, H. et al. E.coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11, 5101–5109 (1992).

    Article  CAS  Google Scholar 

  43. van Noort, J., Verbrugge, S., Goosen, N., Dekker, C. & Dame, R.T. Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. USA 101, 6969–6974 (2004).

    Article  CAS  Google Scholar 

  44. Dame, R.T., Noom, M.C. & Wuite, G.J. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444, 387–390 (2006).

    Article  CAS  Google Scholar 

  45. Skoko, D. et al. Mechanism of chromosome compaction and looping by the Escherichia coli nucleoid protein Fis. J. Mol. Biol. 364, 777–798 (2006).

    Article  CAS  Google Scholar 

  46. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  47. Bennink, M.L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nat. Struct. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  48. Ritort, F., Mihardja, S., Smith, S.B. & Bustamante, C. Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers. Phys. Rev. Lett. 96, 118301 (2006).

    Article  CAS  Google Scholar 

  49. Baumann, C.G. et al. Stretching of single collapsed DNA molecules. Biophys. J. 78, 1965–1978 (2000).

    Article  CAS  Google Scholar 

  50. Besteman, K., Hage, S., Dekker, N.H. & Lemay, S.G. Role of tension and twist in single-molecule DNA condensation. Phys. Rev. Lett. 98, 058103 (2007).

    Article  CAS  Google Scholar 

  51. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  52. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  53. Niki, H., Yamaichi, Y. & Hiraga, S. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14, 212–223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Viollier, P.H. et al. From the cover: rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl. Acad. Sci. USA 101, 9257–9262 (2004).

    Article  CAS  Google Scholar 

  55. Ohsumi, K., Yamazoe, M. & Hiraga, S. Different localization of SeqA-bound nascent DNA clusters and MukF-MukE- MukB complex in Escherichia coli cells. Mol. Microbiol. 40, 835–845 (2001).

    Article  CAS  Google Scholar 

  56. Dekker, N.H. et al. The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci. USA 99, 12126–12131 (2002).

    Article  CAS  Google Scholar 

  57. Strick, T., Allemand, J., Croquette, V. & Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74, 115–140 (2000).

    Article  CAS  Google Scholar 

  58. Strick, T.R., Allemand, J.-F., Bensimon, D. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  59. Hagerman, P.J. Flexibility of DNA. Annu. Rev. Biophys. Biophys. Chem. 17, 265–286 (1988).

    Article  CAS  Google Scholar 

  60. Bouchiat, C. et al. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76, 409–413 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to D. Bensimon and V. Croquette for their help and advice in assembling the magnetic tweezers. This work has been supported in part by grant GM63786 from the US National Institutes of Health and an award from the Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

Y.C. carried out analysis of MukB using magnetic tweezers; Z.M.P. purified proteins and verified their biochemical activity; V.V.R. designed experiments and statistical approaches and wrote the manuscript.

Corresponding author

Correspondence to Valentin V Rybenkov.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Petrushenko, Z. & Rybenkov, V. MukB acts as a macromolecular clamp in DNA condensation. Nat Struct Mol Biol 15, 411–418 (2008). https://doi.org/10.1038/nsmb.1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1410

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing