Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP

Abstract

Adaptor proteins modify substrate recognition by AAA+ ATPases. We examined how the adaptor ClpS regulates substrate choice by the Escherichia coli protease ClpAP. Binding of six ClpS molecules to a ClpA hexamer enhanced N-end-rule substrate degradation and inhibited ssrA-tagged protein proteolysis. Substoichiometric ClpS binding allowed intermediate degradation of both substrate types, revealing that adaptor stoichiometry influences substrate choice. ClpS controls substrate selection using distinct mechanisms. The N-terminal segment is essential for delivering N-end-rule substrates but dispensable for ssrA-protein inhibition. We tested existing models for ClpS action and found that ClpS does not block recognition of ssrA-tagged substrates by steric occlusion and that adaptor-mediated tethering of N-end-rule substrates to ClpAP was insufficient to explain facilitated delivery. We propose that ClpS functions, at least in part, as an allosteric effector of ClpAP, broadening our understanding of how AAA+ adaptors control substrate selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual roles of ClpS in changing ClpAP substrate preference.
Figure 2: Stoichiometry of ClpS.
Figure 3: Co-degradation of GFP-ssrA and YLFVQ-titinI27.
Figure 4: ClpS N-terminal extension is not a steric inhibitor of GFP-ssrA.
Figure 5: ClpS N-terminal extension is required for active delivery of YLFVQ-titinI27 and for effect on ClpAP ATPase rate.
Figure 6: Model for ClpS-mediated change in ClpA binding preferences.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  2. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000).

    Article  CAS  Google Scholar 

  3. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  4. Mogk, A. et al. Broad yet high substrate specificity: the challenge of AAA+ proteins. J. Struct. Biol. 146, 90–98 (2004).

    Article  CAS  Google Scholar 

  5. Baker, T.A. & Sauer, R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006).

    Article  CAS  Google Scholar 

  6. Katayama, Y. et al. The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. J. Biol. Chem. 263, 15226–15236 (1988).

    CAS  PubMed  Google Scholar 

  7. Woo, K.M., Chung, W.J., Ha, D.B., Goldberg, A.L. & Chung, C.H. Protease Ti from Escherichia coli requires ATP hydrolysis for protein breakdown but not for hydrolysis of small peptides. J. Biol. Chem. 264, 2088–2091 (1989).

    CAS  PubMed  Google Scholar 

  8. Beuron, F. et al. At sixes and sevens: characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248–259 (1998).

    Article  CAS  Google Scholar 

  9. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  10. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  Google Scholar 

  11. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  Google Scholar 

  12. Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    Article  CAS  Google Scholar 

  13. Guo, F., Esser, L., Singh, S.K., Maurizi, M.R. & Xia, D. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J. Biol. Chem. 277, 46753–46762 (2002).

    Article  CAS  Google Scholar 

  14. Zeth, K. et al. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nat. Struct. Biol. 9, 906–911 (2002).

    Article  CAS  Google Scholar 

  15. Erbse, A. et al. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753–756 (2006).

    Article  CAS  Google Scholar 

  16. Wang, K.H., Sauer, R.T. & Baker, T.A. ClpS modulates but is not essential for bacterial N-end rule degradation. Genes Dev. 21, 403–408 (2007).

    Article  CAS  Google Scholar 

  17. Tobias, J.W., Shrader, T.E., Rocap, G. & Varshavsky, A. The N-end rule in bacteria. Science 254, 1374–1377 (1991).

    Article  CAS  Google Scholar 

  18. Xia, D., Esser, L., Singh, S.K., Guo, F. & Maurizi, M.R. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. J. Struct. Biol. 146, 166–179 (2004).

    Article  CAS  Google Scholar 

  19. Farrell, C.M., Grossman, A.D. & Sauer, R.T. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750–1761 (2005).

    Article  CAS  Google Scholar 

  20. Flynn, J.M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 98, 10584–10589 (2001).

    Article  CAS  Google Scholar 

  21. Hirel, P.H., Schmitter, M.J., Dessen, P., Fayat, G. & Blanquet, S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. USA 86, 8247–8251 (1989).

    Article  CAS  Google Scholar 

  22. Hinnerwisch, J., Reid, B.G., Fenton, W.A. & Horwich, A.L. Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease. J. Biol. Chem. 280, 40838–40844 (2005).

    Article  CAS  Google Scholar 

  23. Piszczek, G., Rozycki, J., Singh, S.K., Ginsburg, A. & Maurizi, M.R. The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer. J. Biol. Chem. 280, 12221–12230 (2005).

    Article  CAS  Google Scholar 

  24. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    Article  CAS  Google Scholar 

  25. Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000).

    Article  CAS  Google Scholar 

  26. Wah, D.A. et al. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12, 355–363 (2003).

    Article  CAS  Google Scholar 

  27. Dougan, D.A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).

    Article  CAS  Google Scholar 

  28. Bolon, D.N., Wah, D.A., Hersch, G.L., Baker, T.A. & Sauer, R.T. Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Mol. Cell 13, 443–449 (2004).

    Article  CAS  Google Scholar 

  29. Wah, D.A., Levchenko, I., Baker, T.A. & Sauer, R.T. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol. 9, 1237–1245 (2002).

    Article  CAS  Google Scholar 

  30. Kirstein, J. et al. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25, 1481–1491 (2006).

    Article  CAS  Google Scholar 

  31. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  Google Scholar 

  32. Kim, Y.I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Wang (Massachusetts Institute of Technology) for generously providing N-end-rule proteins and P. Chien, M. Laub, T. Schwartz, K. Wang, C. Wu and members of the Baker and Sauer Labs for discussion and advice. Plasmid clpA M169T/pET9a was a gift from J. Flanagan (Hershey Medical Center). T.A.B. is an employee of the Howard Hughes Medical Institute. This work was supported by US National Institutes of Health grant GM49224 and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.H. carried out the experiments. J.Y.H., R.T.S. and T.A.B. contributed to experimental design and wrote the manuscript.

Corresponding author

Correspondence to Tania A Baker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Methods (PDF 214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, J., Sauer, R. & Baker, T. Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nat Struct Mol Biol 15, 288–294 (2008). https://doi.org/10.1038/nsmb.1392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing