Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of human dCK suggests strategies to improve anticancer and antiviral therapy

Abstract

Human deoxycytidine kinase (dCK) phosphorylates the natural deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA) and is an essential enzyme for the phosphorylation of numerous nucleoside analog prodrugs routinely used in cancer and antiviral chemotherapy. For many of these compounds, the phosphorylation step catalyzed by dCK is the rate-limiting step in their overall activation pathway. To determine the factors that limit the phosphorylation efficiency of the prodrug, we solved the crystal structure of dCK to a resolution of 1.6 Å in complex with its physiological substrate deoxycytidine and with the prodrugs AraC and gemcitabine. The structures reveal the determinants of dCK substrate specificity. Especially relevant to new prodrug development is the interaction between Arg128 and the hydrogen-bond acceptor at the sugar 2′-arabinosyl position of AraC and gemcitabine. On the basis of the structures, we designed a catalytically superior dCK variant that could be used in suicide gene-therapy applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall fold of dCK.
Figure 2: Electron density of the dCK-bound substrates.
Figure 3: Schematic representation of the interactions made by the bound nucleoside with dCK.
Figure 4: Superposition of the dCK (yellow) and dGK (cyan) active-site residues.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hapke, D.M., Stegmann, A.P. & Mitchell, B.S. Retroviral transfer of deoxycytidine kinase into tumor cell lines enhances nucleoside toxicity. Cancer Res. 56, 2343–2347 (1996).

    CAS  PubMed  Google Scholar 

  2. Owens, J.K., Shewach, D.S., Ullman, B. & Mitchell, B.S. Resistance to 1-β-D-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res. 52, 2389–2393 (1992).

    CAS  PubMed  Google Scholar 

  3. Ruiz van Haperen, V.W. et al. Development and molecular characterization of a 2′,2′-difluorodeoxycytidine-resistant variant of the human ovarian carcinoma cell line A2780. Cancer Res. 54, 4138–4143 (1994).

    CAS  PubMed  Google Scholar 

  4. Stegmann, A.P., Honders, W.H., Willemze, R., Ruiz van Haperen, V.W. & Landegent, J.E. Transfection of wild-type deoxycytidine kinase (dCK) cDNA into an AraC- and DAC-resistant rat leukemic cell line of clonal origin fully restores drug sensitivity. Blood 85, 1188–1194 (1995).

    CAS  PubMed  Google Scholar 

  5. Blackstock, A.W. et al. Tumor uptake and elimination of 2′,2′-difluoro-2′-deoxycytidine (gemcitabine) after deoxycytidine kinase gene transfer: correlation with in vivo tumor response. Clin. Cancer Res. 7, 3263–3268 (2001).

    CAS  PubMed  Google Scholar 

  6. Ostermann, N. et al. Insights into the phosphoryltransfer mechanism of human thymidylate kinase gained from crystal structures of enzyme complexes along the reaction coordinate. Structure 8, 629–642 (2000).

    Article  CAS  Google Scholar 

  7. Bergman, A., Pinedo, H. & Peters, G. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist. Updat. 5, 19–33 (2002).

    Article  CAS  Google Scholar 

  8. Johansson, K. et al. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat. Struct. Biol. 8, 616–620 (2001).

    Article  CAS  Google Scholar 

  9. Hendrickson, W.A. & Ogata, C.M. Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523 (1997).

    Article  CAS  Google Scholar 

  10. Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configuration. J. Mol. Biol. 33, 491–497 (1963).

    Google Scholar 

  11. Knecht, W. et al. A few amino acid substitutions can convert deoxyribonucleoside kinase specificity from pyrimidines to purines. EMBO J. 21, 1873–1880 (2002).

    Article  CAS  Google Scholar 

  12. Herrstrom Sjoberg, A., Wang, L. & Eriksson, S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs. Mol. Pharmacol. 53, 270–273 (1998).

    Article  Google Scholar 

  13. Usova, E.V. & Eriksson, S. Identification of residues involved in the substrate specificity of human and murine dCK. Biochem. Pharmacol. 64, 1559–1567 (2002).

    Article  CAS  Google Scholar 

  14. White, J.C. & Capizzi, R.L. A critical role for uridine nucleotides in the regulation of deoxycytidine kinase and the concentration dependence of 1-β-D-arabinofuranosylcytosine phosphorylation in human leukemia cells. Cancer Res. 51, 2559–2565 (1991).

    CAS  PubMed  Google Scholar 

  15. Shewach, D.S., Reynolds, K.K. & Hertel, L. Nucleotide specificity of human deoxycytidine kinase. Mol. Pharmacol. 42, 518–524 (1992).

    CAS  PubMed  Google Scholar 

  16. Hughes, T.L., Hahn, T.M., Reynolds, K.K. & Shewach, D.S. Kinetic analysis of human deoxycytidine kinase with the true phosphate donor uridine triphosphate. Biochemistry 36, 7540–7547 (1997).

    Article  CAS  Google Scholar 

  17. Eriksson, S., Munch-Petersen, B., Johansson, K. & Eklund, H. Structure and function of cellular deoxyribonucleoside kinases. Cell. Mol. Life Sci. 59, 1327–1346 (2002).

    Article  CAS  Google Scholar 

  18. Lotfi, K. et al. Biochemical pharmacology and resistance to 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine, a novel analogue of cladribine in human leukemic cells. Clin. Cancer Res. 5, 2438–2444 (1999).

    CAS  PubMed  Google Scholar 

  19. Mansson, E. et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem. Pharmacol. 65, 237–247 (2003).

    Article  CAS  Google Scholar 

  20. Kantarjian, H.M. et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J. Clin. Oncol. 21, 1167–1173 (2003).

    Article  CAS  Google Scholar 

  21. Wang, J., Choudhury, D., Chattopadhyaya, J. & Eriksson, S. Stereoisomeric selectivity of human deoxyribonucleoside kinases. Biochemistry 38, 16993–16999 (1999).

    Article  CAS  Google Scholar 

  22. Kewn, S., Veal, G.J., Hoggard, P.G., Barry, M.G. & Back, D.J. Lamivudine (3TC) phosphorylation and drug interactions in vitro. Biochem. Pharmacol. 54, 589–595 (1997).

    Article  CAS  Google Scholar 

  23. Gourdeau, H. et al. Mechanism of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines. Cancer Res. 61, 7217–7224 (2001).

    CAS  PubMed  Google Scholar 

  24. Townsley, C.A. et al. Phase II study of troxacitabine (BCH-4556) in patients with advanced and/or metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol. 21, 1524–1529 (2003).

    Article  CAS  Google Scholar 

  25. Giles, F.J. et al. Randomized phase I/II study of troxacitabine combined with cytarabine, idarubicin, or topotecan in patients with refractory myeloid leukemias. J. Clin. Oncol. 21, 1050–1056 (2003).

    Article  CAS  Google Scholar 

  26. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  27. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystal. 24, 795–800 (1993).

    Article  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863–1871 (1999).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zhou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Brünger, A.T. X-PLOR: A System for X-ray Crystallography and NMR (Yale University Press, New Haven, 1993).

    Google Scholar 

  32. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  33. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  34. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  35. Agarwal, K.C., Miech, R.P. & Parks, R.E. Jr. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol. 51, 483–490 (1978).

    Article  CAS  Google Scholar 

  36. Esnouf, R. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138 (1997).

    Google Scholar 

  37. Merrit, E.A. & Murphy, M.E.P. Raster3D version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions made by K. Storie, L. Shuvalova and A. Arockiasamy in the initial stages of the project, and thank B. Beck and M. Godsey for careful reading of the manuscript. We thank Eli Lilly & Co. for providing gemcitabine as a gift. We thank the staff of BioCars and SerCAT for help in data collection at the Advanced Photon Source. E.S. and A.L. were supported by the US National Institutes of Health (NIH), and S.O., C.M. and M.K. were supported by grants from the Deutsche Forschungsgemeinschaft and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Lavie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabini, E., Ort, S., Monnerjahn, C. et al. Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat Struct Mol Biol 10, 513–519 (2003). https://doi.org/10.1038/nsb942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing