Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional insights into PINCH LIM4 domain–mediated integrin signaling

Abstract

PINCH is an adaptor protein found in focal adhesions, large cellular complexes that link extracellular matrix to the actin cytoskeleton. PINCH, which contains an array of five LIM domains, has been implicated as a platform for multiple protein–protein interactions that mediate integrin signaling within focal adhesions. We had previously characterized the LIM1 domain of PINCH, which functions in focal adhesions by binding specifically to integrin-linked kinase. Using NMR spectroscopy, we show here that the PINCH LIM4 domain, while maintaining the conserved LIM scaffold, recognizes the third SH3 domain of another adaptor protein, Nck2 (also called Nckβ or Grb4), in a manner distinct from that of the LIM1 domain. Point mutation of LIM residues in the SH3-binding interface disrupted LIM–SH3 interaction and substantially impaired localization of PINCH to focal adhesions. These data provide novel structural insight into LIM domain–mediated protein–protein recognition and demonstrate that the PINCH-Nck2 interaction is an important component of the focal adhesion assembly during integrin signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural properties of LIM4 and its sequence and structural comparisons with other LIM domains.
Figure 2: Chemical shift perturbation data for the LIM4–SH3-3 interaction.
Figure 3: ILK-PINCH and PINCH-Nck2 interactions.
Figure 4: R197A-R198A double mutation reduces the efficiency of PINCH localization to focal adhesions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Martin, K.H., Slack, J.K., Boerner, S.A., Martin, C.C. & Parsons, J.T. Integrin connections map: to infinity and beyond. Science 296, 1652–1653 (2002).

    Article  CAS  Google Scholar 

  2. Hynes, R. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  Google Scholar 

  3. Rearden, A. A new LIM protein containing an autoepitope homologous to 'senescent cell antigen'. Biochem. Biophys. Res. Commun. 201, 1124–1131 (1994).

    Article  CAS  Google Scholar 

  4. Tu, Y., Li, F., Goicoechea, S. & Wu, C. The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol. Cell. Biol. 19, 2425–2434 (1999).

    Article  CAS  Google Scholar 

  5. Wu, C. & Dedhar, S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J. Cell Biol. 155, 505–510 (2001).

    Article  CAS  Google Scholar 

  6. Hobert, O., Moerman, D.G., Clark, K.A., Beckerle, M.C. & Ruvkun, G. A conserved LIM protein that affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J. Cell Biol. 144, 45–57 (1999).

    Article  CAS  Google Scholar 

  7. Clark, K.A., McGrall, M. & Beckerle, M.C. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 130, 2611–2621 (2003).

    Article  CAS  Google Scholar 

  8. Tu, Y., Li, F. & Wu, C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol. Biol. Cell 9, 3367–3382 (1998).

    Article  CAS  Google Scholar 

  9. Li, F., Zhang, Y. & Wu, C. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell-cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J. Cell Sci. 112, 4589–4599 (1999).

    CAS  PubMed  Google Scholar 

  10. Velyvis, A., Yang, Y., Wu, C. & Qin, J. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain. J. Biol. Chem. 276, 4932–4939 (2001).

    Article  CAS  Google Scholar 

  11. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  12. Clore, G.M. & Gronenborn, A.M. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34 (1998).

    Article  CAS  Google Scholar 

  13. Perez-Alvarado, G.C. et al. Structure of the carboxy-terminal LIM domain from the cysteine rich protein CRP. Nat. Struct. Biol. 1, 388–398 (1994).

    Article  CAS  Google Scholar 

  14. Perez-Alvarado, G.C. et al. Structure of the cysteine-rich intestinal protein, CRIP. J. Mol. Biol. 257, 153–174 (1996).

    Article  CAS  Google Scholar 

  15. Konrat, R., Krautler, B., Weiskirchen, R. & Bister, K. Structure of cysteine- and glycine-rich protein CRP2. Backbone dynamics reveal motional freedom and independent spatial orientation of the LIM domains. J. Biol. Chem. 273, 23233–23240 (1998).

    Article  CAS  Google Scholar 

  16. Yao, X. et al. Solution structure of the chicken cysteine-rich protein, CRP1, a double-LIM protein implicated in muscle differentiation. Biochemistry 38, 5701–5713 (1999).

    Article  CAS  Google Scholar 

  17. Spera, S. & Bax, A. Correlations of Cα/β chemical shifts to the protein secondary structure. J. Am. Chem. Soc. 113, 5490–5492 (1991).

    Article  CAS  Google Scholar 

  18. Wüthrich, K. NMR of Proteins and Nucleic Acids (John Wiley & Sons, New York; 1986).

    Book  Google Scholar 

  19. Gorelick, R.J. et al. Strict conservation of the retroviral nucleocapsid protein zinc finger is strongly influenced by its role in viral infection processes: characterization of HIV-1 particles containing mutant nucleocapsid zinc-coordinating sequences. Virology 256, 92–104 (1999).

    Article  CAS  Google Scholar 

  20. Guo, J. et al. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J. Virol. 76, 4370–4378 (2002).

    Article  CAS  Google Scholar 

  21. Michelsen, J.W. et al. Mutational analysis of the metal sites in an LIM domain. J. Biol. Chem. 269,11108–11113 (1994).

    CAS  PubMed  Google Scholar 

  22. Schuler, W., Kloiber, K., Matt, T., Bister, K. & Konrat, R. Application of cross- correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains. Biochemistry 40, 9596–9604 (2001).

    Article  CAS  Google Scholar 

  23. Qin, J., Vinogradova, O. & Gronenborn, A. Protein-protein interactions probed by NMR spectroscopy. Methods Enzymol. 339, 377–389 (2001).

    Article  CAS  Google Scholar 

  24. Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002).

    Article  CAS  Google Scholar 

  25. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. & Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice (Academic Press, San Diego, 1996).

    Google Scholar 

  26. Li, S.C. et al. Structure of a Numb PTB domain-peptide complex suggests a basis for diverse binding specificity. Nat. Struct. Biol. 5, 1075–1083 (1998).

    Article  CAS  Google Scholar 

  27. Zwahlen, C, Li, S.C., Kay, L.E., Pawson, T. & Forman-Kay, J.D. Multiple modes of peptide recognition by the PTB domain of the cell fate determinant Numb. EMBO J. 19, 1505–1515 (2000).

    Article  CAS  Google Scholar 

  28. Dhalluin, C. et al. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Mol. Cell 6, 921–929 (2000).

    Article  CAS  Google Scholar 

  29. Mallis, R.J., Brazin, K.N., Fulton, D.B. & Andreotti, A.H. Structural characterization of a proline-driven conformational switch within the Itk SH2 domain. Nat. Struct. Biol. 9, 900–905 (2002).

    Article  CAS  Google Scholar 

  30. Sadler, I., Crawford, A.W., Michelsen, J.W. & Beckerle, M.C. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J. Cell. Biol. 119, 1573–1587 (1992).

    Article  CAS  Google Scholar 

  31. Schmeichel, K.L. & Beckerle, M.C. Molecular dissection of a LIM domain. Mol. Biol. Cell 8, 219–230 (1997).

    Article  CAS  Google Scholar 

  32. Wu R, et al. Specificity of LIM domain interactions with receptor tyrosine kinases. J. Biol. Chem. 271, 15934–15941 (1996).

    Article  CAS  Google Scholar 

  33. Zhang, Y. et al. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. J. Cell Sci. 115, 4777–4786 (2002).

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  35. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common-sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  36. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  37. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  38. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association — insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  39. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  40. Zhang, Y., Guo, L., Chen, K. & Wu, C. A critical role of the PINCH-integrin-linked kinase interaction in the regulation of cell shape change and migration. J. Biol. Chem. 277, 318–326 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Delaglio for NMRPipe software and D. Garrett for PIPP. The work was supported by US National Institutes of Health grants to J.Q. and C.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanyue Wu or Jun Qin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velyvis, A., Vaynberg, J., Yang, Y. et al. Structural and functional insights into PINCH LIM4 domain–mediated integrin signaling. Nat Struct Mol Biol 10, 558–564 (2003). https://doi.org/10.1038/nsb938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb938

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing