Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of a bacterial oxalate transporter

Abstract

The major facilitator superfamily (MFS) represents one of the largest classes of evolutionarily related membrane transporter proteins. Here we present the three-dimensional structure at 6.5 Å resolution of a bacterial member of this superfamily, OxlT. The structure, derived from an electron crystallographic analysis of two-dimensional crystals, reveals that the 12 helices in the OxlT molecule are arranged around a central cavity, which is widest at the center of the membrane. The helices divide naturally into three groups: a peripheral set comprising helices 3, 6, 9 and 12; a second set comprising helices 2, 5, 8 and 11 that faces the central substrate transport pathway across most of the length of the membrane; and a third set comprising helices 1, 4, 7 and 10 that participate in the pathway either on the cytoplasmic side (4 and 10) or on the periplasmic side (1 and 7). Overall, the architecture of the protein is remarkably symmetric, providing a compelling molecular explanation for the ability of such transporters to carry out bi-directional substrate transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fitted lattice lines for three selected reflections showing the quality of the fit for phases (upper panels) and amplitudes (lower panels) along the z* axis.
Figure 2: Stereo view of the three-dimensional density map of OxlT, contoured at 1.3 σ.
Figure 3: Horizontal sections (3 Å thick) from the density map at intervals of 7.5 Å from the center.
Figure 4: Schematic analysis of structure.

Similar content being viewed by others

References

  1. Paulsen, I.T., Sliwinski, M.K. & Saier, M.H. Jr J. Mol. Biol. 277, 573–592 (1998).

    Article  CAS  Google Scholar 

  2. Doyle, D.A. et al. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  3. Weiss, M.S. et al. Science 254, 1627–1630 (1991).

    Article  CAS  Google Scholar 

  4. Murata, K. et al. Nature 407, 599–605 (2000).

    Article  CAS  Google Scholar 

  5. Fu, D. et al. Science 290, 481–486 (2000).

    Article  CAS  Google Scholar 

  6. Henderson, R. et al. J. Mol. Biol. 213, 899–929 (1990).

    Article  CAS  Google Scholar 

  7. Chang, G. & Roth, C.B. Science 293, 1793–1800 (2001).

    Article  CAS  Google Scholar 

  8. Anantharam, V., Allison, M.J. & Maloney, P.C. J. Biol. Chem. 264, 7244–7250 (1989).

    CAS  PubMed  Google Scholar 

  9. Heymann, J.A. et al. EMBO J. 20, 4408–4413 (2001).

    Article  CAS  Google Scholar 

  10. Subramaniam, S. et al. J. Mol. Biol. 287, 145–161 (1999).

    Article  CAS  Google Scholar 

  11. Dubochet, J. et al. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  12. Crowther, R.A., Henderson, R. & Smith, J.M. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  13. Henderson, P.J. & Maiden, M.C. Phil. Trans. R. Soc. Lond. B Biol. Sci. 326, 391–410 (1990).

    Article  CAS  Google Scholar 

  14. Williams, K.A. Nature 403, 112–115 (2000).

    Article  CAS  Google Scholar 

  15. Goswitz, V.C. & Brooker, R.J. Protein Sci. 4, 534–537 (1995).

    Article  CAS  Google Scholar 

  16. Frillingos, S., Sahin-Toth, M., Wu, J. & Kaback, H.R. FASEB J. 12, 1281–1299 (1998).

    Article  CAS  Google Scholar 

  17. Tamura, N. et al. J. Biol. Chem. 276, 20330–20339 (2001).

    Article  CAS  Google Scholar 

  18. Amos, L.A., Henderson, R. & Unwin, P.N. Prog. Biophys. Mol. Biol. 39, 183–231 (1982).

    Article  CAS  Google Scholar 

  19. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta. Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  20. Kleywegt, G.J. & Jones, T.A. Structure 4, 1395–1400 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Ye for generous assistance with purification of OxIT and D. Bliss for assistance with preparation of figures. This work was supported by grants to S.S. from the intramural program at the National Institutes of Health and to P.C.M. from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Subramaniam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, T., Heymann, J., Shi, D. et al. Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Mol Biol 9, 597–600 (2002). https://doi.org/10.1038/nsb821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing