Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of human phosphatidylcholine transfer protein in complex with its ligand

Abstract

Phosphatidylcholines (PtdChos) comprise the most common phospholipid class in eukaryotic cells. In mammalian cells, these insoluble molecules are transferred between membranes by a highly specific phosphatidylcholine transfer protein (PC-TP) belonging to the steroidogenic acute regulatory protein related transfer (START) domain superfamily of hydrophobic ligand-binding proteins. The crystal structures of human PC-TP in complex with dilinoleoyl-PtdCho or palmitoyl-linoleoyl-PtdCho reveal that a single well-ordered PtdCho molecule occupies a centrally located tunnel. The positively charged choline headgroup of the lipid engages in cation–π interactions within a cage formed by the faces of three aromatic residues. These binding determinants and those for the phosphoryl group may be exposed to the lipid headgroup at the membrane–water interface by a conformational change involving the amphipathic C-terminal helix and an Ω-loop. The structures presented here provide a basis for rationalizing the specificity of PC-TP for PtdCho and may identify common features used by START proteins to bind their hydrophobic ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of human PC-TP.
Figure 2: Structural comparison of START domains.
Figure 3: The PtdCho-binding pocket.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Smith, R. & Tanford, C. J. Mol. Biol. 67, 75–83 (1972).

    Article  CAS  Google Scholar 

  2. Wirtz, K.W. & Zilversmit, D.B. J. Biol. Chem. 243, 3596–3602 (1968).

    CAS  PubMed  Google Scholar 

  3. Geijtenbeek, T.B., Smith, A.J., Borst, P. & Wirtz, K.W. Biochem. J. 316, 49–55 (1996).

    Article  CAS  Google Scholar 

  4. Cohen, D.E. & Green, R.M. Gene 163, 327–328 (1995).

    Article  CAS  Google Scholar 

  5. van Helvoort, A. et al. Proc. Natl. Acad. Sci. USA 96, 11501–11506 (1999).

    Article  CAS  Google Scholar 

  6. Wu, M.K., Boylan, M.O. & Cohen, D.E. Gene 235, 111–120 (1999).

    Article  CAS  Google Scholar 

  7. Cohen, D.E., Green, R.M., Wu, M.K. & Beier, D.R. Biochim. Biophys. Acta 1447, 265–270 (1999).

    Article  CAS  Google Scholar 

  8. Wirtz, K.W. Annu. Rev. Biochem. 60, 73–99 (1991).

    Article  CAS  Google Scholar 

  9. Baez, J.M., Barbour, S.E. & Cohen, D.E. J. Biol. Chem. 277, 6198-6206 (2002).

    Article  CAS  Google Scholar 

  10. Iyer, L.M., Koonin, E.V. & Aravind, L. Proteins 43, 134–144 (2001).

    Article  CAS  Google Scholar 

  11. Ponting, C.P. & Aravind, L. Trends Biochem. Sci. 24, 130–132 (1999).

    Article  CAS  Google Scholar 

  12. Ponting, C.P., Schultz, J., Milpetz, F. & Bork, P. Nucleic Acids Res. 27 229–232 (1999).

    Article  CAS  Google Scholar 

  13. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  Google Scholar 

  14. Tsujishata, Y. & Hurley, J.H. Nature Struct. Biol. 7, 408–414 (2000).

    Article  Google Scholar 

  15. de Brouwer, A. Functional studies on the phosphatidylcholine transfer protein. Ph.D thesis, Utrecht Univ. (2002).

  16. Gajhede, M. et al. Nature Struct. Biol. 3, 1040–1045 (1996).

    Article  CAS  Google Scholar 

  17. Yoder, M.D. et al. J. Biol. Chem. 276, 9246–9252 (2001).

    Article  CAS  Google Scholar 

  18. de Brouwer, A.P.M. et al. Chem. Phys. Lipids 112, 109–119 (2001).

    Article  CAS  Google Scholar 

  19. Burley, S.K. & Petsko, G.A. Science 229, 23–28 (1985).

    Article  CAS  Google Scholar 

  20. Gallivan, J.P. & Dougherty, D.A. Proc. Natl. Acad. Sci. USA 96, 9459–9464 (1999).

    Article  CAS  Google Scholar 

  21. Bellamy, H.D., Lim, L.W., Mathews, F.S. & Dunham, W.R. J. Biol. Chem. 264, 11887–11892 (1989).

    CAS  PubMed  Google Scholar 

  22. Sussman, J.L. et al. Science 253, 872–879 (1991).

    Article  CAS  Google Scholar 

  23. Nielsen, P.R. et al. Nature 416, 103–107 (2002).

    Article  CAS  Google Scholar 

  24. Jacobs, S.A. & Khorasanizadeh, S. Science 295, 2080–2083 (2002).

    Article  CAS  Google Scholar 

  25. Wirtz, K.W., Devaux, P.F. & Bienvenue, A. Biochemistry 19, 3395–3399 (1980).

    Article  CAS  Google Scholar 

  26. Johnson, L.W. & Zilversmit, D.B. Biochim. Biophys. Acta 375, 165–175 (1975).

    Article  CAS  Google Scholar 

  27. McLean, L.R. & Phillips, M.C. Biochemistry 20, 2893–2900 (1981).

    Article  CAS  Google Scholar 

  28. Feng, L., Chan, W.W., Roderick, S.L. & Cohen, D.E. Biochemistry 39, 15399–15409 (2000).

    Article  CAS  Google Scholar 

  29. Bose, H.S., Sugawara, T., Strauss, J.F. III & Miller, W.L N. Engl. J. Med. 335, 1870–1878 (1996).

    Article  CAS  Google Scholar 

  30. Chan, W.W., Roderick, S.L. & Cohen, D.E. Biochim. Biophys. Acta 1596, 1–5 (2001).

    Article  Google Scholar 

  31. Otwinoski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  Google Scholar 

  32. Weeks, C.M. & Miller, R. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  33. Collaborative Computing Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  34. Terwilliger, T.C. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  35. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  37. Brünger, A.T. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  38. Ramachandran, G.N., Ramakrishnan, C. & Sasisekharan, V. J. Mol. Biol. 7, 95–99 (1963).

    Article  CAS  Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, S.D. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  40. Feng, L. & Cohen, D.E. J. Lipid Res. 39, 1862–1869 (1998).

    CAS  PubMed  Google Scholar 

  41. Evans, S.V. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Bacon, D.J. & Anderson, W.F. J. Mol. Graph. 6, 219–220 (1996).

    Article  Google Scholar 

  44. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases and the Alexandrine and Alexander L. Sinsheimer Fund. W.W.C. is the recipient of an American Gastroenterological Association Summer Student Fellowship. M.W.V. was supported by a grant from the National Institute of Allergy and Infectious Diseases. We would like to acknowledge the assistance of M. Sullivan at NSLS beamline X9A of the Brookhaven National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven L. Roderick or David E. Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roderick, S., Chan, W., Agate, D. et al. Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nat Struct Mol Biol 9, 507–511 (2002). https://doi.org/10.1038/nsb812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing