Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the UGAGAU hexaloop that braces Bacillus RNase P for action

Abstract

Long-range interactions involving the P5.1 hairpin of Bacillus RNase P RNA are thought to form a structural truss to support RNA folding and activity. We determined the structure of this element by NMR and refined the structure using residual dipolar couplings from a sample weakly oriented in a dilute liquid crystalline mixture of polyethylene glycol and hexanol. Dipolar coupling refinement improved the global precision of the structure from 1.5 to 1.2 Å (to the mean), revised the bend angle between segments of the P5.1 stem and corroborated the structure of the loop region. The UGAGAU hexaloop of P5.1 contains two stacks of bases on opposite sides of the loop, distinguishing it from GNRA tetraloops. The unusual conformation of the juxtaposed uracil residues within the hexaloop may explain their requirement in transactivation assays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P5.1 hairpin excised from RNase P for tranactivation and NMR studies, along with conservation of loops of P5.1 and its P15.1 contact partner.
Figure 2: Transactivation of Δ5.1 RNase P by P5.1 elements shows a tolerance for stem alterations but not for loop alterations.
Figure 3: T1ρ relaxation times of aromatic 13C6/8 peaks suggest relative mobility of bases.
Figure 4: Stero view of ensembles of P5.1 structures calculated with and without dipolar couplings.
Figure 5: Stereo view comparison of the P5.1 hexaloop structure with other loops.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  Google Scholar 

  2. Loria, A. & Pan, T. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2, 551–563 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Haas, E.S., Morse, D.P., Brown, J.W., Schmidt, F.J. & Pace, N.R. Long-range structure in ribonuclease P RNA. Science 254, 853–856 (1991).

    Article  CAS  Google Scholar 

  4. Brown, J.W. The ribonuclease P database. Nucleic Acids Res. 27, 314 (1999).

  5. Pan, T. Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34, 902–909 (1995).

    Article  CAS  Google Scholar 

  6. Haas, E.S., Banta, A.B., Harris, J.K., Pace, N.R. & Brown, J.W. Structure and evolution of ribonuclease P RNA in Gram-positive bacteria. Nucleic Acids Res. 24, 4775–4782 (1996).

    Article  CAS  Google Scholar 

  7. Chen, J.L., Nolan, J.M., Harris, M.E. & Pace, N.R. Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 17, 1515–1525 (1998).

    Article  CAS  Google Scholar 

  8. Massire, C., Jaeger, L. & Westhof, E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J. Mol. Biol. 279, 773–793 (1998).

    Article  CAS  Google Scholar 

  9. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996).

    Article  CAS  Google Scholar 

  10. Zhou, H., Vermeulen, A., Jucker, F.M. & Pardi, A. Incorporating residual dipolar couplings into the NMR solution structure determination of nucleic acids. Biopolymers 52, 168–180 (1999).

    Article  CAS  Google Scholar 

  11. Allain, F.H. & Varani, G. Structure of the P1 helix from group I self-splicing introns. J. Mol. Biol. 250, 333–353 (1995).

    Article  CAS  Google Scholar 

  12. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732–738 (1997).

    Article  CAS  Google Scholar 

  13. Tjandra, N. & Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278, 1111–1114 (1997).

    Article  CAS  Google Scholar 

  14. Hansen, M.R., Hanson, P. & Pardi, A. Filamentous bacteriophage for aligning RNA, DNA, and proteins for measurement of nuclear magnetic resonance dipolar coupling interactions. Methods Enzymol. 317, 220–240 (2000).

    Article  CAS  Google Scholar 

  15. Ruckert, M. & Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J. Am. Chem. Soc. 122, 7793–7797 (2000).

    Article  Google Scholar 

  16. Warren, J.J. & Moore, P.B. Application of dipolar coupling data to the refinement of the solution structure of the sarcin-ricin loop RNA. J Biomol. NMR 20, 311–323 (2001).

    Article  CAS  Google Scholar 

  17. Mollova, E.T., Hansen, M.R. & Pardi, A. Global structure of RNA determined with residual dipolar couplings. J. Am. Chem. Soc. 122, 11561–11562 (2000).

    Article  CAS  Google Scholar 

  18. van der Horst, G., Christian, A. & Inoue, T. Reconstitution of a group I intron self-splicing reaction with an activator RNA. Proc. Natl. Acad. Sci. USA 88, 184–188 (1991).

    Article  CAS  Google Scholar 

  19. Kim, H., Poelling, R.R., Leeper, T.C., Meyer, M.A. & Schmidt, F.J. In vitro transactivation of Bacillus subtilis RNase P RNA. FEBS Lett. 506, 235–238 (2001).

    Article  CAS  Google Scholar 

  20. Mueller, G.A. et al. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J. Mol. Biol. 300, 197–212 (2000).

    Article  CAS  Google Scholar 

  21. Butcher, S.E., Allain, F.H. & Feigon, J. Solution structure of the loop B domain from the hairpin ribozyme. Nature Struct. Biol. 6, 212–216 (1999).

    Article  CAS  Google Scholar 

  22. Hermann, T. & Patel, D.J. Stitching together RNA tertiary architectures. J. Mol. Biol. 294, 829–849 (1999).

    Article  CAS  Google Scholar 

  23. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  24. SantaLucia, J. Jr, Kierzek, R. & Turner, D.H. Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science 256, 217–219 (1992).

    Article  CAS  Google Scholar 

  25. Zarrinkar, P.P., Wang, J. & Williamson, J.R. Slow folding kinetics of RNase P RNA. RNA 2, 564–573 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan, T. & Sosnick, T.R. Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nature Struct. Biol. 4, 931–938 (1997).

    Article  CAS  Google Scholar 

  27. Fang, X.W., Pan, T. & Sosnick, T.R. Mg2+-dependent folding of a large ribozyme without kinetic traps. Nature Struct. Biol. 6, 1091–1095 (1999).

    Article  CAS  Google Scholar 

  28. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  29. Ellinger, T. & Ehricht, R. Single-step purification of T7 RNA polymerase with a 6-histidine tag. Biotechniques 24, 718–720 (1998). (Published erratum appears in Biotechniques 25, 640 (1998)).

    Article  CAS  Google Scholar 

  30. Rickwood, D. & Hames, B.D. Gel electrophoresis of nucleic acids: a practical approach (Oxford University Press, New York; 1990).

    Google Scholar 

  31. Nikonowicz, E.P. et al. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 20, 4507–4513 (1992).

    Article  CAS  Google Scholar 

  32. Cho, B., Taylor, D.C., Nicholas, H.B. Jr & Schmidt, F.J. Interacting RNA species identified by combinatorial selection. Bioorg. Med. Chem. 5, 1107–1113 (1997).

    Article  CAS  Google Scholar 

  33. Batey, R.T., Battiste, J.L. & Williamson, J.R. Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 261, 300–322 (1995).

    Article  CAS  Google Scholar 

  34. Nikonowicz, E.P. & Pardi, A. An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J. Mol. Biol. 232, 1141–1156 (1993).

    Article  CAS  Google Scholar 

  35. Ikura, M. & Bax, A. Isotope-filtered 2D NMR of a protein-peptide complex study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440 (1992).

    Article  CAS  Google Scholar 

  36. Gemmecker, G., Olejniczak, T.E. & Fesik, W.S. An improved method for selectively observing protons attached to 12C in the presence of 1H-13C spin pairs. J. Magn. Reson. 96, 199–204 (1992).

    CAS  Google Scholar 

  37. Heus, H.A., Wijmenga, S.S., Vandeven, F.J.M. & Hilbers, C.W. Sequential backbone assignment in 13C-labeled RNA via through-bond coherence transfer using three-dimensional triple resonance spectroscopy (1H, 13C, 31P) and two-dimensional hetero TOCSY. J. Am. Chem. Soc. 116, 4983–4984 (1994).

    Article  CAS  Google Scholar 

  38. Marino, J.P. et al. A three-dimensional triple-resonance 1H,13C,31P experiment — sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J. Am. Chem. Soc. 116, 6472–6473 (1994).

    Article  CAS  Google Scholar 

  39. Varani, G., Aboul-ela, F., Allain, F. & Gubser, C.C. Novel three-dimensional 1H-13C-31P triple resonance experiments for sequential backbone correlations in nucleic acids. J. Biomol. NMR 5, 315–320. (1995).

    Article  CAS  Google Scholar 

  40. Yamazaki, T., Muhandiram, R. & Kay, L.E. NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N-labeled proteins: application to 13Cαcarbons. J. Am. Chem. Soc. 116, 8266–8278 (1994).

    Article  CAS  Google Scholar 

  41. Legault, P., Hoogstraten, C.G., Metlitzky, E. & Pardi, A. Order, dynamics and metal-binding in the lead-dependent ribozyme. J. Mol. Biol. 284, 325–335 (1998).

    Article  CAS  Google Scholar 

  42. Davis, D.G., Perlman, M.E. & London, R.E. Direct measurements of the dissociation-rate constant for inhibitor enzyme complexes via the T1 ρ and T2 (CPMG) methods. J. Magn. Reson. 104, 266–275 (1994).

    Article  CAS  Google Scholar 

  43. Seggerson, K. & Moore, P.B. Structure and stability of variants of the sarcin-ricin loop of 28S rRNA: NMR studies of the prokaryotic SRL and a functional mutant. RNA 4, 1203–1215 (1998).

    Article  CAS  Google Scholar 

  44. Andersson, P., Weigelt, J. & Otting, G. Spin-state selection filters for the measurement of heteronuclear one-bond coupling constants. J. Biomol. NMR 12, 435–441 (1998).

    Article  CAS  Google Scholar 

  45. Brünger, A.T. et al. Crystallography and NMR system — a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  46. Stein, E.G., Rice, L.M. & Brünger, A.T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. 124, 154–164 (1997).

    Article  CAS  Google Scholar 

  47. Stallings, S.C. & Moore, P.B. The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. Structure 5, 1173–1185 (1997).

    Article  CAS  Google Scholar 

  48. Clore, G.M., Gronenborn, A.M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216–221 (1998).

    Article  CAS  Google Scholar 

  49. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  50. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Univ. of Missouri Research Board (S.R.V.), NASA (F.J.S.), University of Missouri Molecular Biology Program pre-doctoral fellowship (T.C.L.) and the Missouri Agricultural Experiment Station. The 500 and 600 MHz spectrometers were purchased in part with grants from the National Science Foundation and Univeristy of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Van Doren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leeper, T., Martin, M., Kim, H. et al. Structure of the UGAGAU hexaloop that braces Bacillus RNase P for action. Nat Struct Mol Biol 9, 397–403 (2002). https://doi.org/10.1038/nsb775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb775

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing