Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kinetic partitioning of protein folding and aggregation

Abstract

We have systematically studied the effects of 40 single point mutations on the conversion of the denatured form of the α/β protein acylphosphatase (AcP) into insoluble aggregates. All the mutations that significantly perturb the rate of aggregation are located in two regions of the protein sequence, residues 16–31 and 87–98, each of which has a relatively high hydrophobicity and propensity to form β-sheet structure. The measured changes in aggregation rate upon mutation correlate with changes in the hydrophobicity and β-sheet propensity of the regions of the protein in which the mutations are located. The two regions of the protein sequence that determine the aggregation rate are distinct from those parts of the sequence that determine the rate of protein folding. Dissection of the protein into six peptides corresponding to different regions of the sequence indicates that the kinetic partitioning between aggregation and folding can be attributed to the intrinsic conformational preferences of the denatured polypeptide chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rate of aggregation for wild type AcP and some representative mutational variants.
Figure 2: Change in the rate of a, aggregation and b, folding of AcP resulting from mutation at various positions.
Figure 3: β-sheet propensity and hydropathy profiles of AcP.
Figure 4: Far-UV CD spectra of peptides corresponding to various sequence regions of AcP.
Figure 5: Analysis of the changes of aggregation rate of AcP resulting from mutation.
Figure 6: Regions of AcP involved in aggregation and folding.

Similar content being viewed by others

References

  1. Fink, A.L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding Des. 3, R9–R23 (1998).

    Article  CAS  Google Scholar 

  2. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  3. Raso, S.W. & King, J. In Mechanisms of protein folding. 2nd edn (ed. Pain, R.H.) 406–428 (Oxford University Press, Oxford; 1999).

    Google Scholar 

  4. Leroux, M.R. & Hartl, F.U. In Mechanisms of protein folding. 2nd edn (ed. Pain, R.H.) 364–405 (Oxford University Press, Oxford; 1999).

    Google Scholar 

  5. Kelly, J.W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17 (1996).

    Article  CAS  Google Scholar 

  6. Dobson, C.M. The structural basis of protein folding and its links with human disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 133–145 (2001).

    Article  CAS  Google Scholar 

  7. Mattson, M.P., Pedersen, W.A., Duan, W., Culmsee, C. & Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann. NY Acad. Sci. 893, 154–175 (1999).

    Article  CAS  Google Scholar 

  8. Yankner, B.A., Duffy, L.K & Kirschner, D.A. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250, 279–282 (1990).

    Article  CAS  Google Scholar 

  9. Varadarajan, S., Yatin, S., Aksenova, M. & Butterfield, D.A. Review: Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J. Struct. Biol. 130, 184–208 (2000).

    Article  CAS  Google Scholar 

  10. Pastore, A., Saudek, V., Ramponi, G. & Williams, R.J.P. Three-dimensional structure of acylphosphatase. Refinement and structure analysis. J. Mol. Biol. 224, 427–440 (1992).

    Article  CAS  Google Scholar 

  11. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci USA 96, 3590–3594 (1999).

    Article  CAS  Google Scholar 

  12. Chiti, F. et al. Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J. 19, 1441–1449 (2000).

    Article  CAS  Google Scholar 

  13. Matouschek, A., Kellis, J.T., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989).

    Article  CAS  Google Scholar 

  14. Fersht, A.R. In Structure and mechanism of protein science. A guide to enzyme catalysis and protein folding. 540–572 (W.H. Freeman & Co., New York; 1999).

  15. Grantcharova, V., Alm, E.J., Baker, D. & Horwich, A.L. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70–82 (2001).

    Article  CAS  Google Scholar 

  16. Gunasekaran, K., Eyles, S.J., Hagler, A.T. & Gierasch, L.M. Keeping it in the family: folding studies of related proteins. Curr. Opin. Struct. Biol. 11, 83–93 (2001).

    Article  CAS  Google Scholar 

  17. Hurle, M.R., Helms, L.R., Li, L., Chan, W. & Wetzel, R.A. A role for destabilising amino acid replacements in light chain amyloidosis. Proc. Natl. Acad. Sci. USA 91, 5446–5450 (1994).

    Article  CAS  Google Scholar 

  18. McCutchen, S.L., Lai, Z.H., Miroy, G.J., Kelly, J.W. & Colon, W. Comparison of lethal and nonlethal transthyrethin variants and their relationship to amyloid disease. Biochemistry 34, 13527–13536 (1995).

    Article  CAS  Google Scholar 

  19. Ramirez-Alvarado, M., Merkel, J.S. & Regan L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl. Acad. Sci. USA 97, 8979–8984 (2000).

    Article  CAS  Google Scholar 

  20. Main, E.R. & Jackson, S.E. Does trifluoroethanol affect folding pathways and can it be used as a probe of structure in transition states? Nature Struct. Biol. 6, 831–835 (1995).

    Google Scholar 

  21. Harper, J.D, Lieber, C.M. & Lansbury, P.T. Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein. Chem. Biol. 4, 951–959 (1997).

    Article  CAS  Google Scholar 

  22. Conway, K.A., Harper, J.D. & Lansbury, P.T. Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563 (2000).

    Article  CAS  Google Scholar 

  23. King, C.Y. Supporting the structural basis of prion strains: induction and identification of [PSI] variants. J. Mol. Biol. 307, 1247–1260 (2001).

    Article  CAS  Google Scholar 

  24. Betts, S. & King, J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure Fold. Des. 7, R131–R139 (1999).

  25. Blanco, F.J, Rivas, G. & Serrano, L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nature Struct. Biol. 1, 584–590 (1994).

    Article  CAS  Google Scholar 

  26. Roseman, M.A. Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J. Mol. Biol. 200, 513–22 (1988).

    Article  CAS  Google Scholar 

  27. Lacroix, E., Viguera, A.R. & Serrano, L. Elucidating the folding problem of α-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters. J. Mol. Biol. 284, 173–191 (1998).

    Article  CAS  Google Scholar 

  28. Street, A.G. & Mayo, S.L. Intrinsic β-sheet propensities result from van der Waals interactions between side chains and the local backbone. Proc. Natl. Acad. Sci. USA 96, 9074–9076 (1999).

    Article  CAS  Google Scholar 

  29. Villegas, V et al. Protein engineering as a strategy to avoid formation of amyloid fibrils. Protein Sci. 9, 1700–1708 (2000).

    Article  CAS  Google Scholar 

  30. Kallberg, Y., Gustafsson, M., Persson, B., Thyberg, J., Johansson, J. Prediction of amyloid fibril-forming proteins. J. Biol. Chem. 276, 12945–12950 (2001).

    Article  CAS  Google Scholar 

  31. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Prolines and amyloidogenicity in fragments of the Alzheimer's peptide β/A4. Biochemistry 34, 724–730 (1995).

    Article  CAS  Google Scholar 

  32. Chiti, F. et al. Mutational analysis of AcP suggests the importance of topology and contact order in protein folding. Nature Struct. Biol. 6, 1005–1010 (1999).

    Article  CAS  Google Scholar 

  33. Vendruscolo, M., Paci, E., Dobson, C.M. & Karplus, M. Three key residues form a critical contact network in a transition state for protein folding. Nature 409, 641–645 (2001).

    Article  CAS  Google Scholar 

  34. Smith, L.J., Fiebig, K.M., Schwalbe, H. & Dobson, C.M. The concept of a random coil. Residual structure in peptides and denatured proteins. Folding Des. 1, R95–R106 (1996).

  35. Neira, J.L. & Fersht, A.R. Acquisition of native-like interactions in C-terminal fragments of barnase. J. Mol. Biol. 287, 421–432 (1999).

    Article  CAS  Google Scholar 

  36. Sinclair, J.F. & Shortle, D. Analysis of long-range interactions in a model denatured state of staphylococcal nuclease based on correlated changes in backbone dynamics. Protein Sci. 8, 991–1000 (1999).

    Article  CAS  Google Scholar 

  37. Zhang, O. & Forman-Kay, J.D. NMR studies of unfolded states of an SH3 domain in aqueous solution and denaturing conditions. Biochemistry 36, 3959–3970 (1997).

    Article  CAS  Google Scholar 

  38. Redfield, C., Schulman B.A., Milhollen, M.A., Kim, P.S. & Dobson, C.M. α-lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nature Struct. Biol. 6, 948–952 (1999).

    Article  CAS  Google Scholar 

  39. Dobson, C.M., Sali, A. & Karplus, M. Protein folding: A perspective from theory and experiment. Angew. Chem. Int. Ed. 37, 868–893 (1998).

    Article  Google Scholar 

  40. Neira, J.L. et al. Following co-operative formation of secondary and tertiary structure in a single protein module. J. Mol. Biol. 268, 185–197 (1997).

    Article  CAS  Google Scholar 

  41. Kortemme, T., Kelly; M.J., Kay, L.E., Forman-Kay, J. & Serrano, L. Similarities between the spectrin SH3 domain denatured state and its folding transition state. J. Mol. Biol. 297, 1217–1229 (2000).

    Article  CAS  Google Scholar 

  42. Swietnicki, W., Petersen, R.B., Gambetti, P. & Surewicz, W.K. Familial mutations and the thermodynamic stability of the recombinant human prion protein. J. Biol. Chem. 273, 31048–31052 (1998).

    Article  CAS  Google Scholar 

  43. Liemann, S. & Glockshuber R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258–3267 (1999).

    Article  CAS  Google Scholar 

  44. Otzen, D.E., Kristensen, O. & Oliveberg, M. Designed protein tetramer zipped together with a hydrophobic Alzheimer homology: a structural clue to amyloid assembly. Proc. Natl. Acad. Sci. USA 97, 9907–9912 (2000).

    Article  CAS  Google Scholar 

  45. Baker, D. A surprising simplicity to protein folding. Nature 405, 39–42 (2000).

    Article  CAS  Google Scholar 

  46. Taddei, N. et al. Looking for residues involved in muscle acylphosphatase catalytic mechanism and structural stabilization: the role of Asn 41, Thr 42 and Thr 46. Biochemistry 35, 7077–7083 (1996).

    Article  CAS  Google Scholar 

  47. Taddei, N. et al. Stabilisation of α-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding. J. Mol. Biol. 300, 633–647 (2000).

    Article  CAS  Google Scholar 

  48. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  49. Naiki, H. & Nakakuki, K. First-order kinetic model of Alzhaimer's β-amyloid fibril extension in vitro. Lab. Invest. 74, 374–383 (1996).

    CAS  PubMed  Google Scholar 

  50. Friedhoff, P., von Bergen, M., Mandelkow, E. -M. & Mandelkow, E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl. Acad. Sci. USA 95, 15712–15717 (1998).

    Article  CAS  Google Scholar 

  51. Taylor, J.R. Introduction to error analysis, the study of uncertainties in physical measurements. (University Science Books, Sausalito, California; 1982).

    Google Scholar 

Download references

Acknowledgements

We are very grateful for support from the Accademia Nazionale dei Lincei (F.C.), the Fondazione Telethon-Italia (F.C.) and the Wellcome Trust (C.M.D.). The OCMS is supported by the BBSRC, the EPSRC and the MRC. The DSB in Florence is supported by the Italian CNR and the Fondazione Telethon-Italia. The authors thank the Centro Interdip. from the University of Florence for assistance in mass spectrometry; and M. Vendruscolo, K. Plaxco, M. Karplus and A. Fersht for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Dobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiti, F., Taddei, N., Baroni, F. et al. Kinetic partitioning of protein folding and aggregation. Nat Struct Mol Biol 9, 137–143 (2002). https://doi.org/10.1038/nsb752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing