Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a bacterial cocaine esterase

Abstract

Here we report the first structure of a cocaine-degrading enzyme. The bacterial esterase, cocE, hydrolyzes pharmacologically active (−)-cocaine to a nonpsychoactive metabolite with a rate faster than any other reported cocaine esterase (kcat = 7.8 s−1 and KM = 640 nM). Because of the high catalytic proficiency of cocE, it is an attractive candidate for novel protein-based therapies for cocaine overdose. The crystal structure of cocE, solved by multiple anomalous dispersion (MAD) methods, reveals that cocE is a serine esterase composed of three domains: (i) a canonical α/β hydrolase fold (ii) an α-helical domain that caps the active site and (iii) a jelly-roll-like β-domain that interacts extensively with the other two domains. The active site was identified within the interface of all three domains by analysis of the crystal structures of transition state analog adduct and product complexes, which were refined at 1.58 Å and 1.63 Å resolution, respectively. These structural studies suggest that substrate recognition arises partly from interactions between the benzoyl moiety of cocaine and a highly evolved specificity pocket.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine hydrolysis.
Figure 2: CocE structure and topology.
Figure 3: Stereo views of the active site of cocE.
Figure 4: Proposed mechanism for acyl intermediate hydrolysis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Bresler, M.M., Rosser, S.J., Basran, A. & Bruce, N.C. Appl. Environ. Microbiol. 66, 904–908 (2000).

    Article  CAS  Google Scholar 

  2. Inaba, T., Stewart, D.J. & Kalow, W. Clin. Pharmacol. Ther. 23, 547–552 (1978).

    Article  CAS  Google Scholar 

  3. Brzezinski, M.R., Abraham, T.L., Stone, C.L., Dean, R.A. & Bosron, W.F. Biochem. Pharmacol. 48, 1747–1755 (1994).

    Article  CAS  Google Scholar 

  4. Pindel, E.V. et al. J. Biol. Chem. 272, 14769–14775 (1997).

    Article  CAS  Google Scholar 

  5. Britt, A.J., Bruce, N.C. & Lowe, C.R. J. Bacteriol. 174, 2087–2094 (1992).

    Article  CAS  Google Scholar 

  6. Carroll, F.L., Howell, L.L. & Kuhar, M.J. J. Med. Chem. 42, 2721–2736 (1999).

    Article  CAS  Google Scholar 

  7. Carrera, M.R.A. et al. Nature 378, 727–730 (1995).

    Article  CAS  Google Scholar 

  8. Mets, B. et al. Proc. Natl. Acad. Sci. USA 95, 10176–10181 (1998).

    Article  CAS  Google Scholar 

  9. Landry, D.W., Zhao, K., Yang, G.X.Q., Glickman, M. & Georgiadis, T.M. Science 259, 1899–1901 (1993).

    Article  CAS  Google Scholar 

  10. Lu, G. DOMID http://bioinfol.mbfys.lu.se/Domid/ (1999).

  11. Ollis, D.L. et al. Protein Eng. 5, 197–211 (1992).

    Article  CAS  Google Scholar 

  12. Nardini, M. & Dijkstra, B.W. Curr. Opin. Struct. Biol. 9, 732–737 (1999).

    Article  CAS  Google Scholar 

  13. Heikinheimo, P., Goldman, A., Jeffries, C. & Ollis, D.L. Structure 7, R141–R146 (1999).

    Article  CAS  Google Scholar 

  14. Connolly, M.L. J. Appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  15. Sheriff, S., Hendrickson, W.A. & Smith, J.L. J. Mol. Biol. 197, 273–296 (1987).

    Article  CAS  Google Scholar 

  16. Derewenda, Z.S. & Wei, Y. J. Am. Chem. Soc. 117, 2104–2105 (1995).

    Article  CAS  Google Scholar 

  17. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  18. Wei, Y. et al. Structure 6, 511–519 (1997).

    Article  Google Scholar 

  19. Fulop, V., Bocskei Z., & Polgar, L. Cell 94, 161–170 (1998).

    Article  CAS  Google Scholar 

  20. Egloff, M.P. et al. Biochemistry 34, 2751–2762 (1995).

    Article  CAS  Google Scholar 

  21. Wirsching, P., Ashley, J.A., Lo, C.-H.L., Janda, K.D. & Lerner, R.A. Science 270, 1775–1782 (1995).

    Article  CAS  Google Scholar 

  22. Melton, R.G. & Sherwood, R.F. J. Natl. Cancer Inst. 88, 153–165 (1996).

    Article  CAS  Google Scholar 

  23. Abuchowski, A., Davis, F. & Davis, S. Cancer Treat. Rep. 65, 1077–1081 (1981).

    CAS  PubMed  Google Scholar 

  24. Xie, W. et al. Mol. Pharmacol. 55, 83–91 (1999).

    Article  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  26. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 53, 571–579 (1997).

    Article  CAS  Google Scholar 

  27. Terwilliger, T.C. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  28. Cowtan, K.D. & Main, P. Acta Crystallogr. D 52, 43–48 (1996).

    Article  CAS  Google Scholar 

  29. Lamzin, V.S. & Wilson, K.S. Acta Crystallogr. D 49, 129–149 (1993).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  32. Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277B, 319–343 (1997).

    Article  Google Scholar 

  33. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  34. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  35. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Advanced Light Source at Berkeley and the Stanford Synchrotron Radiation Laboratory (SSRL), in particular A. Gonzalez, for advice on MAD data collection. We are also indebted to R. Stanfield for assistance on synchrotron trips and M. Elsliger for helpful discussions. Support was provided by the National Institutes of Health (I.A.W.), the Biotechnology and Biological Sciences Research Council (N.C.B.), the Howard Hughes Medical Institute (J.M.T.), and the Bernie Gilula Foundation (N.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, N., Turner, J., Stevens, J. et al. Crystal structure of a bacterial cocaine esterase. Nat Struct Mol Biol 9, 17–21 (2002). https://doi.org/10.1038/nsb742

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb742

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing