Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence selectivity and degeneracy of a restriction endonuclease mediated by DNA intercalation

Abstract

The crystal structure of the HincII restriction endonuclease–DNA complex shows that degenerate specificity for blunt-ended cleavage at GTPyPuAC sequences arises from indirect readout of conformational preferences at the center pyrimidine-purine step. Protein-induced distortion of the DNA is accomplished by intercalation of glutamine side chains into the major groove on either side of the recognition site, generating bending by either tilt or roll at three distinct loci. The intercalated side chains propagate a concerted shift of all six target-site base pairs toward the minor groove, producing an unusual cross-strand purine stacking at the center pyrimidine–purine step. Comparison of the HincII and EcoRV cocrystal structures suggests that sequence-dependent differences in base–stacking free energies are a crucial underlying factor mediating protein recognition by indirect readout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the HincII–DNA complex.
Figure 2: Enzyme–DNA interactions.
Figure 3: DNA conformation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rhodes, D., Schwabe, J.W.R., Chapman, L. & Fairall, L. Phil. Trans. R. Soc. Lond. B Biol. Sci. 351, 501–509 (1996).

    Article  CAS  Google Scholar 

  2. Luscombe, N.M., Austin, S.E., Berman, H.M. & Thornton, J.M. Genome Biol. 1, REVIEWS001.1–REVIEWS001.37 (2000).

    Article  Google Scholar 

  3. Schumacher, M.A., Hurlburt, B.K. & Brennan, R.G. Nature 409, 215–219 (2001).

    Article  CAS  Google Scholar 

  4. Bareket-Samish, A., Cohen, I. & Haran, T.E. J. Mol. Biol. 299, 965–977 (2000).

    Article  CAS  Google Scholar 

  5. Bareket-Samish, A., Cohen, I. & Haran, T.E. J. Mol. Biol. 277, 1071–1080 (1998).

    Article  CAS  Google Scholar 

  6. Kovall, R.A. & Matthews, B.W. Curr. Opin. Chem. Biol. 3, 578–583 (1999).

    Article  CAS  Google Scholar 

  7. Kostrewa, D. & Winkler, F.K. Biochemistry 34, 683–696 (1995).

    Article  CAS  Google Scholar 

  8. Martin, A.M., Sam, M.D., Reich, N.O. & Perona, J.J. Nature Struct. Biol. 6, 269–277 (1999).

    Article  CAS  Google Scholar 

  9. Olson, W.K., Gorin, A.A., Lu, X.J., Hock, L.M. & Zhurkin, V.B. Proc. Natl. Acad. Sci. USA 95, 11163–11168 (1998).

    Article  CAS  Google Scholar 

  10. Crothers, D.M. Proc. Natl. Acad. Sci. USA 95, 15163–15165 (1998).

    Article  CAS  Google Scholar 

  11. El Hassan, M.A. & Calladine, C.R. Phil. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 355, 43–100 (1997).

    Article  CAS  Google Scholar 

  12. Packer, M.J., Dauncey, M.P. & Hunter, C.A. J. Mol. Biol. 295, 71–83 (2000).

    Article  CAS  Google Scholar 

  13. Dickerson, R.E. Nucleic Acids Res. 26, 1906–1926 (1998).

    Article  CAS  Google Scholar 

  14. Kelly, T.J. Jr. & Smith, H.O. J. Mol. Biol. 51, 393–409 (1970).

    Article  CAS  Google Scholar 

  15. Winkler, F.K. et al. EMBO J. 12, 1781–1795 (1993).

    Article  CAS  Google Scholar 

  16. Athanasiadis, A. et al. Nature Struct. Biol. 1, 469–475 (1994).

    Article  CAS  Google Scholar 

  17. Huai, Q. et al. EMBO J. 19, 3110–3118 (2000).

    Article  CAS  Google Scholar 

  18. Liepinsh, E., Andersson, M., Ruysschaert, J. M. & Otting, G. Nature Struct. Biol. 4, 793–795 (1997).

    Article  CAS  Google Scholar 

  19. Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 669–699 (1989).

    Article  CAS  Google Scholar 

  20. Werner, M.H., Gronenborn, A.M. & Clore, G.M. Science 271, 778–784 (1996).

    Article  CAS  Google Scholar 

  21. Lewis, M. et al. Science 271, 1247–1254 (1996).

    Article  CAS  Google Scholar 

  22. Tsutakawa, S.E., Jingami, H. & Morikawa, K. Cell 99, 615–623 (1999).

    Article  CAS  Google Scholar 

  23. Ban, C. & Yang, W. EMBO J. 17, 1526–1534 (1998).

    Article  CAS  Google Scholar 

  24. Lavery, R., Zakrzewska, K. & Sklenar, H. Comp. Phys. Com. 91, 135–158 (1995).

    Article  CAS  Google Scholar 

  25. Calladine, C.R. J. Mol. Biol. 161, 343–352 (1982).

    Article  CAS  Google Scholar 

  26. Dickerson, R.E. J. Mol. Biol. 166, 419–441 (1983).

    Article  CAS  Google Scholar 

  27. Hobza, P. & Sponer, J. Chem. Rev. 99, 3247–3276 (1999).

    Article  CAS  Google Scholar 

  28. Horton, N.C. & Perona, J.J. Proc. Natl. Acad. Sci. USA 97, 5729–5734 (2000).

    Article  CAS  Google Scholar 

  29. Horton, N.C., Dorner, L.F., Schildkraut, I. & Perona, J.J. Acta Crystallogr. D 55, 1943–1945 (1999).

    Article  CAS  Google Scholar 

  30. Leslie, A.G. Acta Crystallogr. D 55, 1696–1702 (1999).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. (SERC Daresbury Laboratory, Warrington, UK; 1979).

  32. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  33. de la Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1999).

    Article  Google Scholar 

  34. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

  35. Sack, J.S. J. Mol. Graph. 6, 224–225 (1988).

    Article  Google Scholar 

  36. Finzel, B.C. Acta Crystallogr. D 51, 450–457 (1995).

    Article  CAS  Google Scholar 

  37. Brünger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  Google Scholar 

  38. Read, R. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  39. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  40. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  41. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  42. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (to J.J.P.), and by an American Cancer Society Postdoctoral Fellowship and a NSF-POWRE award (to N.C.H.). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resouces, Biomedical Technology Program, and the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Perona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, N., Dorner, L. & Perona, J. Sequence selectivity and degeneracy of a restriction endonuclease mediated by DNA intercalation. Nat Struct Mol Biol 9, 42–47 (2002). https://doi.org/10.1038/nsb741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing