Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders

Abstract

Monoamine oxidase B (MAO B) is a mitochondrial outermembrane flavoenzyme that is a well-known target for antidepressant and neuroprotective drugs. We determined the structure of the human enzyme to 3 Å resolution. The enzyme binds to the membrane through a C-terminal transmembrane helix and apolar loops located at various positions in the sequence. The electron density shows that pargyline, an analog of the clinically used MAO B inhibitor, deprenyl, binds covalently to the flavin N5 atom. The active site of MAO B consists of a 420 Å3-hydrophobic substrate cavity interconnected to an entrance cavity of 290 Å3. The recognition site for the substrate amino group is an aromatic cage formed by Tyr 398 and Tyr 435. The structure provides a framework for probing the catalytic mechanism, understanding the differences between the B- and A-monoamine oxidase isoforms and designing specific inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substrate specificity and catalysis of MAOs.
Figure 2: Stereo view of the experimental electron density map.
Figure 3: Structure of human MAO B.
Figure 4: The substrate binding site of human MAO B.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mitoma, J. & Ito, A. J. Biochem. 111, 20–24 (1992).

    Article  CAS  Google Scholar 

  2. Cesura, A.M. & Pletscher, A. Prog. Drug Res. 38, 171–297 (1992).

    CAS  PubMed  Google Scholar 

  3. Fowler, C.J., Wiberg, A., Oreland, L., Marcusson, J. & Winblad, B. J. Neural Transm. 49, 1–20 (1980).

    Article  CAS  Google Scholar 

  4. Boulton, A.A. et al. Catacholamines. Bridging basic science with clinical medicine. (eds Goldstein, D.G., Eisenhofer, G. & McCarty, R.) 308–311 (Academic Press, New York; 1998).

    Google Scholar 

  5. Vindis, C., Seguelas, M-H., Bianchi, P., Parini, A. & Cambon, C. Biochem. Biophys. Res. Commun. 271, 181–185 (2000).

    Article  CAS  Google Scholar 

  6. Saura, J. et al. Neuroscience 62, 15–30 (1994).

    Article  CAS  Google Scholar 

  7. Chiba, K., Trevor, A. & Castagnoli, N. Jr Biochem. Biophys. Res. Commun. 120, 579–585 (1984).

    Article  Google Scholar 

  8. Fowler, J.S. et al. Nature 379, 733–736 (1996).

    Article  CAS  Google Scholar 

  9. Fraaije M.W. & Mattevi, A. Trends Biochem. Sci. 25, 126–132 (2000).

    Article  CAS  Google Scholar 

  10. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  11. Pawelek, P.D. et al. EMBO J. 19, 1–13 (2000).

    Article  Google Scholar 

  12. Binda, C. et al. Structure 7, 265–276 (1999).

    Article  CAS  Google Scholar 

  13. Newton-Vinson, P., Hubalek, F. & Edmondson, D.E. Protein Expr. Purif. 20, 334–345 (2000).

    Article  CAS  Google Scholar 

  14. von Heijne, G. J. Mol. Biol. 225, 487–494 (1992).

    Article  CAS  Google Scholar 

  15. Ulmschneider, M.B. & Sansom, M.S.P. Biochim. Biophys. Acta 1512, 1–14 (2001).

    Article  CAS  Google Scholar 

  16. Rebrin, I., Gehai, R.M., Chen, K. & Shih, J.C. J. Biol. Chem. 276, 29499–29506 (2001).

    Article  CAS  Google Scholar 

  17. Walker, M.C. & Edmondson, D.E. Biochemistry 33, 7088–7098 (1994).

    Article  CAS  Google Scholar 

  18. Miller, J.R. & Edmondson, D.E. Biochemistry 38, 13670–13683 (1999).

    Article  CAS  Google Scholar 

  19. Trickey, P. et al. Biochemistry 39, 7678–7688 (2000).

    Article  CAS  Google Scholar 

  20. Nandigama, R.K., Miller, J.R. & Edmondson, D.E. Biochemistry, ASAP article (2001).

  21. Wu, H.-F., Chen, K. & Shih, J.C. Mol. Pharmacol. 43, 888–893 (1993).

    CAS  PubMed  Google Scholar 

  22. Geha, R.M., Rebrin, I., Chen, K. & Shih, J.C. J. Biol. Chem. 276, 9877–9882 (2001).

    Article  CAS  Google Scholar 

  23. Leslie A.G. Acta Crystallogr. D 55, 1696–1702 (1999).

    Article  CAS  Google Scholar 

  24. Collaborative Computational Project, Number 4 Acta Crystallogr. D 50, 760–767 (1994).

  25. Sheldrick, G.M. Direct methods for solving macromolecular structure (ed. Fortier, S.) 131–141 (Kluwer Academic Publishers, Dordrecht; 1998).

    Book  Google Scholar 

  26. Tong, L. & Rossmann, M.G. Methods Enzymol. 276, 594–611 (1997).

    Article  CAS  Google Scholar 

  27. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  28. Cowtan, K. & Main, P. Acta Crystallogr. D 54, 487–593 (1998).

    Article  CAS  Google Scholar 

  29. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  30. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  31. Kleywegt, G.J. & Jones, T.A. Acta Crystallogr. D 50, 178–185 (1994).

    Article  CAS  Google Scholar 

  32. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Esnouf, R.M. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  34. Philippsen, A. DINO: Visualizing Structural Biology, http://www.dino3d.org (2001).

  35. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of General Medical Sciences of the NIH, the Consiglio Nazionale delle Ricerche and Agenzia Spaziale Italiana. We thank the staff of the EMBL/DESY and ESRF facilities for help during the data collection. The European Union provided support through the Human Capital Mobility Program to Large Scale Installations Project. We thank A. Coda, B. Curti, M. Rizzi and R. van den Heuvel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dale E. Edmondson or Andrea Mattevi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binda, C., Newton-Vinson, P., Hubálek, F. et al. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Mol Biol 9, 22–26 (2002). https://doi.org/10.1038/nsb732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing