Crystal structure of an Xrcc4–DNA ligase IV complex

Article metrics

Abstract

A complex of two proteins, Xrcc4 and DNA ligase IV, plays a fundamental role in DNA non-homologous end joining (NHEJ), a cellular function required for double-strand break repair and V(D)J recombination. Here we report the crystal structure of human Xrcc4 bound to a polypeptide that corresponds to the DNA ligase IV sequence linking its two BRCA1 C-terminal (BRCT) domains. In the complex, a single ligase chain binds asymmetrically to an Xrcc4 dimer. The helical tails of Xrcc4 undergo a substantial conformational change relative to the uncomplexed protein, forming a coiled coil that unwinds upon ligase binding, leading to a flat interaction surface. A buried network of charged hydrogen bonds surrounded by extensive hydrophobic contacts explains the observed tightness of the interaction. The strong conservation of residues at the interface between the two proteins provides evidence that the observed mode of interaction has been maintained in NHEJ throughout evolution.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Interaction between DNA ligase IV and Xrcc4.
Figure 2: Features of Xrcc4–DNA ligase IV complex.
Figure 3: Evolutionary conservation of amino acids responsible for the Xrcc4–DNA ligase IV interaction.
Figure 4: The protein–protein interface of the human Xrcc4–DNA ligase IV complex.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Critchlow, S.E. & Jackson, S.P. Trends Biochem. Sci. 23, 394–398 (1998).

  2. 2

    Jeggo, P.A. Adv. Genet. 38, 185–218 (1998).

  3. 3

    Grawunder, U. & Harfst, E. Curr. Opin. Immunol. 13, 186–194 (2001).

  4. 4

    Critchlow, S.E., Bowater, R.P. & Jackson, S.P. Curr. Biol. 7, 588–958 (1997).

  5. 5

    Grawunder, U. et al. Nature 388, 492–495 (1997).

  6. 6

    Li, Z. et al. Cell 83, 1079–1089 (1995).

  7. 7

    Gao, Y. et al. Cell 95, 891–902 (1998).

  8. 8

    Frank, K.M. et al. Mol. Cell 5, 993–1002 (2000).

  9. 9

    Gao, Y. et al. Nature 404, 897–900 (2000).

  10. 10

    Barnes, D.E., Stamp, G., Rosewell, I., Denzel, A. & Lindhal, T. Curr. Biol. 8, 1395–1398 (1998).

  11. 11

    Junop, M.S. et al. EMBO J. 19, 5962–5970 (2000).

  12. 12

    Mizuta, R., Cheng, H.L., Gao, Y. & Alt, F.W. Int. Immunol. 9, 1607–1613 (1997).

  13. 13

    Tomkinson, A.E. & Mackey, Z.B. Mutat. Res. 407, 1–9 (1998).

  14. 14

    Bork, P. et al. FASEB J. 11, 68–76 (1997).

  15. 15

    Grawunder, U., Zimmer, D. & Leiber, M.R. Curr. Biol. 8, 873–876 (1998).

  16. 16

    Sibanda, B.L., Blundell, T.L. & Thornton, J.M. J. Mol. Biol. 206, 759–777 (1989).

  17. 17

    Modesti, M., Hesse, J.E. & Gellert, M. EMBO J. 18, 2008–2018 (1999).

  18. 18

    Keller, W., Konig, P. & Richmond, T.J. J. Mol. Biol. 254, 657–667 (1995).

  19. 19

    Gajiwala, K.S. et al. Nature 403, 916–921. (2000).

  20. 20

    Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

  21. 21

    Miller, R., Gallo, S.M., Khalak, H.G. & Weeks, C.M. J. Appl. Crystallogr. 27, 613–621 (1994).

  22. 22

    La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 (1997).

  23. 23

    Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

  24. 24

    Brünger, A. et al. Acta Crystallogr. D 54, 905–921 (1998).

  25. 25

    Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

  26. 26

    Merrit, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

Download references

Acknowledgements

We would like to thank G. Robbins for early work on Xrcc4, and E. Gordon, S. McSweeney, G. Leonard and E. Mitchell for excellent technical assistance at the ESRF beamlines. This research was supported by grants from the Wellcome Trust.

Author information

Correspondence to Luca Pellegrini.

Rights and permissions

Reprints and Permissions

About this article

Further reading