Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily

Abstract

The DNA glycosylase MutY, which is a member of the Helix-hairpin-Helix (HhH) DNA glycosylase superfamily, excises adenine from mispairs with 8-oxoguanine and guanine. High-resolution crystal structures of the MutY catalytic core (cMutY), the complex with bound adenine, and designed mutants reveal the basis for adenine specificity and glycosyl bond cleavage chemistry. The two cMutY helical domains form a positively-charged groove with the adenine-specific pocket at their interface. The Watson-Crick hydrogen bond partners of the bound adenine are substituted by protein atoms, confirming a nucleotide flipping mechanism, and supporting a specific DNA binding orientation by MutY and structurally related DNA glycosylases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical characterization of wild type and mutant cMutY enzymes.
Figure 2: MutY fold, domain structure, adenine binding and molecular surface in stereo view.
Figure 3: MutY active site, adenine binding, and proposed catalytic mechanism.
Figure 4: MutY adenine specificity and DNA binding with implications for the HhH glycosylase superfamily.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lindahl, T. Nature 362, 709–715 ( 1993).

    Article  CAS  Google Scholar 

  2. Gilchrest, B. A. & Bohr, V. A. FASEB J. 11, 322–330 (1997).

    Article  CAS  Google Scholar 

  3. Beckman, K. B. & Ames, B. N. J. Biol. Chem. 272, 19633–19636 (1997).

    Article  CAS  Google Scholar 

  4. Shibutani, S., Takeshita, M. & Grollman, A. P. Nature 349, 431– 434 (1991).

    Article  CAS  Google Scholar 

  5. Michaels, M. L. & Miller, J. H. J. Bacteriol. 174, 6321–6325 ( 1992).

    Article  CAS  Google Scholar 

  6. Cunningham, R. P. Mutat. Res. 383, 189–196 (1997).

    Article  CAS  Google Scholar 

  7. Taddei, F. et al. Science 278, 128–130 (1997).

    Article  CAS  Google Scholar 

  8. Nghiem, Y., Cabrera, M., Cupples, C. G., & Miller, J. H. Proc. Natl. Acad. Sci. USA 85, 2709– 2713 (1988).

    Article  CAS  Google Scholar 

  9. Lu, R., Nash, H. M., & Verdine, G. L. Curr. Biol. 7, 397– 407 (1997).

    Article  CAS  Google Scholar 

  10. Slupska, M.M. et al. J. Bacteriol. 178, 3885– 3892 (1996).

    Article  CAS  Google Scholar 

  11. Parikh, S.S., Mol, C.D. & Tainer, J.A. Structure 5, 1543– 1550 (1997).

    Article  CAS  Google Scholar 

  12. Michaels, M.L., Pham, L., Nghiem, Y., Cruz, C. & Miller, J.H. Nucleic Acids Res. 18, 3841– 3845 (1990).

    Article  CAS  Google Scholar 

  13. Nash, H.M. et al. Curr. Biol. 6, 968– 980 (1996).

    Article  CAS  Google Scholar 

  14. Kuo, C.F. et al. Science 258, 434–440 (1994).

    Article  Google Scholar 

  15. Yamagata, Y. et al. Cell 86, 311–319 (1996).

    Article  CAS  Google Scholar 

  16. Labahn, J. et al. Cell 86, 321–329 (1996).

    Article  CAS  Google Scholar 

  17. Thayer, M.M., Ahern, H., Xing, D., Cunningham, R.P., & Tainer, J.A. EMBO J. 14, 4108– 4120 (1995).

    Article  CAS  Google Scholar 

  18. Manuel, R. C. & Lloyd, R. S. Biochemistry 36, 11140–11152 (1997).

    Article  CAS  Google Scholar 

  19. Dodson, M. L., Michaels, M. L. & Lloyd, R. S. J. Biol. Chem. 269, 32709– 32712 (1994).

    CAS  PubMed  Google Scholar 

  20. Manuel, R. C., Czerwinski, E. W. & Lloyd, R. S. J. Biol. Chem. 271, 16218– 16226 (1996).

    Article  CAS  Google Scholar 

  21. Pelletier, H., Sawaya, M. R., Wolfe, W., Wilson, S. H., & Kraut, J. Biochemistry 35, 12742– 12761 (1996).

    Article  CAS  Google Scholar 

  22. Parikh, S.S., Mol, C.D., Slupphaug, G. Bharati, S. Krokan, H.E., & Tainer, J.A. EMBO J. 17, 5214–5226 (1998).

    Article  CAS  Google Scholar 

  23. McAuley-Hecht, K.E. et al. Biochemistry 33, 10266– 10270 (1994).

    Article  CAS  Google Scholar 

  24. Berdal, K.G., Johansen, R.F. & Seeberg, E. EMBO J. 15, 363– 367 (1998).

    Article  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Meth. Enz. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  26. McRee, D.E. J. Mol. Graphics 10, 44–46 (1992).

    Article  Google Scholar 

  27. Furey, W. & Swaminathan, S. Meth. Enz. 277, 590–629 (1997).

    Article  CAS  Google Scholar 

  28. Cowtan, K. Joint CCP4 and ESF-EACBM newsletter on protein crystallography 31, 34–38 (1994).

    Google Scholar 

  29. Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).

    Article  Google Scholar 

  30. Brünger, A.T., Kuriyan, J. & Karplus, M. Science 235, 458– 460 (1987).

    Article  Google Scholar 

  31. Sheldrick, G.M. & Schneider, T.R. Meth. Enz. 277, 319–343 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.D. Putnam for aid with data collection, T.P. Lo, K.E. Morgan, P. Frosst, M. Nelson, and M.L. Dodson for helpful discussions, and M. Pique for help with figures. This work was supported by grants from the National Institutes of Health to J.A.T., R.S.L. and J.H.M., a Distinguished Chair in Environmental Toxicology from The Houston Endowment to R.S.L., a Robert Welch Foundation grant to R.S.L., an NIH Postdoctoral Fellowship grant and an American Cancer Society fellowship to Y.G., a Special Fellowship from the Leukemia Society of America to C.D.M., and a National Science Foundation Graduate Research fellowship to S.S.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Tainer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Y., Manuel, R., Arvai, A. et al. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily. Nat Struct Mol Biol 5, 1058–1064 (1998). https://doi.org/10.1038/4168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing