Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A minor groove RNA triple helix within the catalytic core of a group I intron

Abstract

Close packing of several double helical and single stranded RNA elements is required for the Tetrahymena group I ribozyme to achieve catalysis. The chemical basis of these packing interactions is largely unknown. Using nucleotide analog interference suppression (NAIS), we demonstrate that the P1 substrate helix and J8/7 single stranded segment form an extended minor groove triple helix within the catalytic core of the ribozyme. Because each triple in the complex is mediated by at least one 2'-OH group, this substrate recognition triplex is unique to RNA and is fundamentally different from major groove homopurine–homopyrimidine triplexes. We have incorporated these biochemical data into a structural model of the ribozyme core that explains how the J8/7 strand organizes several helices within this complex RNA tertiary structure.

This is a preview of subscription content, access via your institution

Access options

Figure 1: a, Secondary structure and modeled regions of the Tetrahymena intron.
Figure 2: NAIS experiments to define tertiary interaction partners for 2'-OH groups in the IGS.
Figure 3: Model of the elements surrounding the J8/7 region of the Tetrahymena group I intron catalytic core.

Similar content being viewed by others

References

  1. Cech, T.R. & Herschlag, D. In Catalytic RNA, vol. 10 (eds Eckstein, F. & Lilley, D.M.J.) 1–17 (Springer, New York; 1996).

    Book  Google Scholar 

  2. Cate, J.H. et al. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  3. Waring, R.B., Towner, P., Minter, S.J. & Davies, R.W. Nature 321, 133–139 (1986).

    Article  CAS  Google Scholar 

  4. Bevilacqua, P.C. & Turner, D.H. Biochemistry 30, 10632–10640 ( 1991).

    Article  CAS  Google Scholar 

  5. Pyle, A.M. & Cech, T.R. Nature 350, 628–631 (1991).

    Article  CAS  Google Scholar 

  6. Strobel, S.A. & Cech, T.R. Biochemistry 32, 13593–13604 (1993).

    Article  CAS  Google Scholar 

  7. Strobel, S.A. & Cech, T.R. Science 267, 675–679 (1995).

    Article  CAS  Google Scholar 

  8. Strobel, S.A., Ortoleva-Donnelly, L., Ryder, S.P., Cate, J.H. & Moncoeur, E. Nature Struct. Biol. 5, 60–66 (1998).

    Article  CAS  Google Scholar 

  9. Ortoleva-Donnelly, L., Szewczak, A.A., Gutell, R.R. & Strobel, S.A. RNA 4, 498–519 ( 1998).

    Article  CAS  Google Scholar 

  10. Pyle, A.M., Murphy, F.L. & Cech, T.R. Nature 358, 123– 128 (1992).

    Article  CAS  Google Scholar 

  11. Damberger, S.H. & Gutell, R.R. Nucleic Acids Res. 22, 3508–3510 ( 1994).

    Article  CAS  Google Scholar 

  12. Tanner, M.A., Anderson, E.M., Gutell, R.R. & Cech, T.R. RNA 3, 1037–1051 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Michel, F. & Westhof, E. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  14. Wang, J.F. & Cech, T.R. Science 256, 526–529 (1992).

    Article  CAS  Google Scholar 

  15. Waring, R.B., Davies, R.W., Brown, T.A. & Scazzocchio, C. Gene 28, 277–291 ( 1984).

    Article  CAS  Google Scholar 

  16. Narlikar, G.J., Khosla, M., Usman, N. & Herschlag, D. Biochemistry 36, 2465–2477 ( 1997).

    Article  CAS  Google Scholar 

  17. Michel, F. & Westhof, E. Nature Struct. Biol. 1, 5–7 (1994).

    Article  CAS  Google Scholar 

  18. Conrad, F., Hanne, A., Gaur, R.K. & Krupp, G. Nucleic Acids Res. 23, 1845–1853 ( 1995).

    Article  CAS  Google Scholar 

  19. Strobel, S.A. & Shetty, K. Proc. Natl. Acad. Sci. USA 94, 2903–2908 (1997).

    Article  CAS  Google Scholar 

  20. Strobel, S.A., Ortoleva-Donnelly, L., Ryder, S.P., Cate, J.H. & Moncoeur, E. Nature Struct. Biol. 5, 60–66 (1998).

    Article  CAS  Google Scholar 

  21. Moore, M.J. & Sharp, P.A. Science 256, 992–997 (1992).

    Article  CAS  Google Scholar 

  22. Ortoleva-Donnelly, L., Kronman, M. & Strobel, S.A. Biochemistry 37, 12933– 12942 (1998).

    Article  CAS  Google Scholar 

  23. Moser, H.E. & Dervan, P.B. Science 238, 645–650 (1987).

    Article  CAS  Google Scholar 

  24. Beal, P.A. & Dervan, P.B. Science 251, 1360–1363 (1991).

    Article  CAS  Google Scholar 

  25. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  26. Pyle, A.M. Science 261, 709–714 ( 1993).

    Article  CAS  Google Scholar 

  27. Christian, E.L. & Yarus, M. J. Mol. Biol. 228, 743–758 (1992).

    Article  CAS  Google Scholar 

  28. Christian, E.L. & Yarus, M. Biochemistry 32, 4475–4480 (1993).

    Article  CAS  Google Scholar 

  29. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. & Cech, T.R. Nature 361, 85–88 ( 1993).

    Article  CAS  Google Scholar 

  30. Weinstein, L.B., Jones, B.C.N.M., Cosstick, R. & Cech, T.R. Nature 388, 805–808 ( 1997).

    Article  CAS  Google Scholar 

  31. Beren, C., Steicher, B., Schroeder, R. & Hillen, W. Chem. Biol. 5, 163–175 ( 1998).

    Article  Google Scholar 

  32. Golden, B. L., Gooding, A. R., Podell, A. R. & Cech, T. R. Science 282, 259–264 ( 1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Sousa for the clone of the Y639F mutant T7 RNA polymerase, R.R. Gutell for analysis of group I sequences, and L. Weinstein for helpful comments on the manuscript. S.P.R. was supported by an NIH training grant. This work was funded by an NIH grant, a Beckman Young Investigator Award, a Searle Scholar award, and a Junior Faculty Research Award from the American Cancer Society to S.A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Strobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szewczak, A., Ortoleva-Donnelly, L., Ryder, S. et al. A minor groove RNA triple helix within the catalytic core of a group I intron. Nat Struct Mol Biol 5, 1037–1042 (1998). https://doi.org/10.1038/4146

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing