Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A paradigm for drug discovery using a conformation from the crystal structure of a presentation scaffold

Abstract

We describe a structural validation of the use of presentation scaffolds for control and elucidation of bioactive conformations of peptides. The protein REI-RGD34—produced by inserting the sequence RIPRGDMP into the CDR1 loop region of the immunoglobulin VL domain REI—strongly inhibits fibrinogen binding to the integrins αIIbβ3 and αVβ3. In the X-ray crystal structure of this protein at 2.4 Å resolution, the RGD-containing loop exhibits defined electron density that is consistent with models for the bioactive conformations of ligands of these receptors based on previous small-molecule studies. Furthermore, a search of a small- molecule database with conformational information derived from the structure of REI-RGD34 identified constrained peptides and peptidomimetics known to be antagonists of the platelet receptor αIIbβ3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Clackson, T. & Wells, J.A. In vitro selection from protein and peptide libraries. Trends Biotech. 12, 173–184 (1994).

    Article  CAS  Google Scholar 

  2. Wetzel, R., Commentary: Learning from the immune system; laboratory methods for creating and refining molecular diversity in polypeptides. Protein Engng. 4, 371–374 (1991).

    Article  CAS  Google Scholar 

  3. Scott, J.K. Discovering peptide ligands using epitope libraries. Trends biochem. Sci. 17, 241–245 (1992).

    Article  CAS  Google Scholar 

  4. O'Neil, K.T. et al. Identification of novel peptide antagonists for GPIIb/llla from a conformationally constrained phage peptide library. Proteins 14, 509–515 (1992).

    Article  CAS  Google Scholar 

  5. Taub, R. & Greene, M.I. Functional validation of ligand mimicry by anti-receptor antibodies: Structural and therapeutic implications. Biochemistry 31, 7431–7435 (1992).

    Article  CAS  Google Scholar 

  6. Lee, G. et al. Strong inhibition of fibrinogen binding to platelet receptor αIIbβIII by RGD sequences installed into a presentation scaffold. Protein Engng. 6, 745–754 (1993).

    Article  CAS  Google Scholar 

  7. Maeda, T. et al. A novel cell adhesion protein engineered by insertion of the Arg-Gly-Ser tetrapeptide. J. biol. Chem. 264, 15165–15168 (1989).

    CAS  PubMed  Google Scholar 

  8. Freimuth, P.I., Taylor, J.W. & Kaiser, E.T. Introduction of guest peptides into Escherichia coli alkaline phosphatase. J. biol. Chem. 265, 896–901 (1990).

    CAS  PubMed  Google Scholar 

  9. Sollazzo, M., Billetta, R. & Zanetti, M. Expression of an exogenous peptide epitope genetically engineered in the variable domain of an immunoglobulin: implications for antibody and peptide folding. Protein Engng. 4, 215–220 (1990).

    Article  CAS  Google Scholar 

  10. Wolfson, A.J., Kanaoka, M., Lau, F.T.K. & Ringe, D. Insertion of an elastase-binding loop into interleukin-1β. Prot. Engng. 4, 313–317 (1991).

    Article  CAS  Google Scholar 

  11. Zaghouani, H. et al. Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science 259, 224–227 (1993).

    Article  CAS  Google Scholar 

  12. Pessi, A. et al. A designed metal-binding protein with a novel fold. Nature 362, 367–369 (1993).

    Article  CAS  Google Scholar 

  13. Dennis, M.S. et al. Platelet glycoprotein iib-iiia protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc. natn. Acad. Sci. U.S.A. 87, 2471–2475 (1989).

    Article  Google Scholar 

  14. Helms, L.R. & Wetzel, R. Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain. Prot. Sci. 4, 2073–2081 (1995).

    Article  CAS  Google Scholar 

  15. Chothia, C. et al. Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883 (1989).

    Article  CAS  Google Scholar 

  16. Tramontano, A., Chothia, C. & Lesk, A.M. Structural determinants of the conformations of medium-sized loops in proteins. Proteins Struct. Funct. Genet. 6, 382–394 (1989).

    Article  CAS  Google Scholar 

  17. Saudek, V., Atkinson, R.A. & Pelton, J.T. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 30, 7369–7372 (1991).

    Article  CAS  Google Scholar 

  18. Adler, M., Lazarus, R.A., Dennis, M.S. & Wagner, G. Solution structure of kistrin, a potent platelet aggregation inhibitor and gp IIb-IIIa antagonist. Science 253, 445–448 (1991).

    Article  CAS  Google Scholar 

  19. Main, A.L., Harvey, T.S., Baron, M., Boyd, J. & Campbell, I.D. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71, 671–678 (1992).

    Article  CAS  Google Scholar 

  20. Dickinson, C.D. et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J. molec. Biol. 230, 1079–1092 (1994).

    Article  Google Scholar 

  21. Yamada, T. et al. Structural and functional analyses of the Arg-Gly-Asp sequence introduced into human lysozyme. J. biol. Chem. 268, 10588–10592 (1993).

    CAS  PubMed  Google Scholar 

  22. Leahy, D.J., Hendrickson, W.A., Aukhil, I. & Erickson, H.P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258, 987–991 (1992).

    Article  CAS  Google Scholar 

  23. Krezel, A.M., Wagner, G., Seymour-Ulmer, J. & Lazarus, R.A. Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science 264, 1944–1947 (1994).

    Article  CAS  Google Scholar 

  24. Kodandapani, R., Veerapandian, B., Kunicki, T.J. & Ely, K.R. Crystal structure of the OPG2 Fab. An antireceptor antibody that mimics an RGD cell adhesion site. J. biol. Chem. 270, 2268–2273 (1995).

    Article  CAS  Google Scholar 

  25. Pfaff, M. et al. Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha lib beta 3, alpha V beta 3, and alpha 5 beta 1 integrins. J. biol. Chem. 269, 20233–20238 (1994).

    CAS  PubMed  Google Scholar 

  26. Barbas, C.F., III, Languino, L.R. & Smith, J.W. High-affinity self-reactive human antibodies by design and selection: targeting the integrin ligand binding site. Proc. natn. Acad. Sci. U.S.A. 90, 10003–10007 (1993).

    Article  CAS  Google Scholar 

  27. Langen, H.T. & Taylor, J.W. Alkaline phosphatase-somatostatin hybrid proteins as probes for somatostatin-14 receptors. Proteins 14, 19 (1992).

    Article  Google Scholar 

  28. Peishoff, C.E. et al. Investigation of conformational specificity at GPIIb/IIIa: Evaluation of conformationally constrained RGD peptides. J. med. Chem. 35, 3962–3969 (1992).

    Article  CAS  Google Scholar 

  29. Abola, E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. in Crystal log raphic Databases - Information Content Software Systems, Scientific Applications (eds. Allen, F.H., Bergerhoff, G. & Sievers, R.) 107–132 (Data Commission of the International Union of Crystallography, Bonn, Germany, 1987).

    Google Scholar 

  30. Scarborough, R.M. et al. Characterization of the integrin specificities of disintegrins isolated from American Pit Viper venoms. J. biol. Chem. 268, 1058–1065 (1993).

    CAS  PubMed  Google Scholar 

  31. Lauri, G. & Bartlett, P.A. CAVEAT: a program to facilitate the design of organic molecules. J. Comput. aided molec. Design 8, 51–66 (1994).

    Article  CAS  Google Scholar 

  32. Etzkorn, F.A., Guo, T., Lipton, M.A., Goldberg, S.D. & Bartlett, P.A. Cyclic hexapeptides and chimeric peptides as mimics of tendamistat. J. Am. chem. Soc. 116, 10412–10425 (1994).

    Article  CAS  Google Scholar 

  33. Callahan, J.F. et al. Design and synthesis of a C7 mimetic for the predicted gamma-turn conformation found in several constrained RGD antagonists. J. med. Chem. 35, 3970–3972 (1992).

    Article  CAS  Google Scholar 

  34. Ku, T.W. et al. Direct Design of a Potent Non-Peptide Fibrinogen Receptor Antagonist Based on the Structure and Conformation of a Highly Constrained Cyclic RGD Peptide. J. Am. chem. Soc. 115, 8861–8862 (1994).

    Article  Google Scholar 

  35. Saragovi, H.U. et al. Design and synthesis of a mimetic from an antibody complementary-determining region. Science 253, 792–795 (1991).

    Article  CAS  Google Scholar 

  36. Chen, S. et al. Design and synthesis of a CD4 β-turn mimetic that inhibits human immunodeficiency virus envelope glycoprotein gp120 binding and infection of human lymphocytes. Proc. natn. Acad. Sci. U.S.A. 89, 5872–5876 (1992).

    Article  CAS  Google Scholar 

  37. Smythe, M.L. & von Itzstein, M. Design and synthesis of a biologically active antibody mimic based on an antibody-antigen crystal structure. J. Am. chem. Soc. 116, 2725–2733 (1994).

    Article  CAS  Google Scholar 

  38. Hurle, M.R., Helms, L.R., Li, L., Chan, W. & Wetzel, R. A role for destabilizing amino acid replacements in light chain amyloidosis. Proc. natn. Acad. Sci. U.S.A. 91, 5446–5450 (1994).

    Article  CAS  Google Scholar 

  39. Smith, J.W., Ruggeri, Z.M., Kunicki, T.J. & Cheresh, D.A. Interaction of integrins αVβ3 and glycoprotein IIb-IIIa with fibrinogen: Differential peptide recognition accounts for distinct binding sites. J. biol. Chem. 265, 12267–12271 (1990).

    CAS  PubMed  Google Scholar 

  40. Kopple, K.D. et al. Conformations of Arg-Gly-Asp containing heterodetic cyclic peptides; solution and crystal studies. J. Am. chem. Soc. 114, 9615–9623 (1992).

    Article  CAS  Google Scholar 

  41. McPherson, Jr., A. The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Meth. biochem. Anal. 23, 249–345 (1976).

    CAS  Google Scholar 

  42. Matthews, B.W. Solvent Content of Protein Crystals. J. molec. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z. Denzo Program Manual (Yale University, New Haven, 1994).

    Google Scholar 

  44. Brunger, A.T. X-PLOR Manual, Version 3.0 (Yale University, New Haven, 1992).

    Google Scholar 

  45. Epp, O. et al. Crystal and molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI. Eur. J. Biochem. 45, 513–524 (1974).

    Article  CAS  Google Scholar 

  46. Jones, T.A. Interactive computer graphics: FRODO. Meth. Enzymol. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  47. Finn, B.E., Chen, X., Jennings, P.A., Saalau-Bethell, S.M. & Matthews, C.R. Reversible unfolding of proteins: kinetic and thermodynamic analysis, in Protein Engineering (eds. Rees, A.R., Stemberg, M.J.E. & Wetzel, R.) 167–189 (IRL Press at Oxford University Press, Oxford, 1992).

    Google Scholar 

  48. Herron, J.N., He, X.-M., Mason, M.I., Voss, E.W. & Edmundson, A.B. Proteins 5, 271–286 (1989).

    Article  CAS  Google Scholar 

  49. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. Sequences of Proteins of Immunological Interest (U. S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Washington, D. C, 1991).

    Google Scholar 

  50. Brooks, I. et al. in Modern Analytical Ultracentrifugation: Acquisition, Analysis and Interpretation of Data for Biological and Synthetic Polymers (eds. Shuster, T.M. & Laue, T.M.) 15–36 (Royal Society of Chemistry, London, 1994).

    Book  Google Scholar 

  51. Samanen, J. et al. Development of a small RGD peptide fibrinogen receptor antagonist with potent antiaggregatory activity in vitro. J. med. Chem. 34, 311–425 (1991).

    Google Scholar 

  52. Gan, Z.-R., Gould, R.J., Jacobs, J.W., Friedman, P.A. & Polokoff, M.A., A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J. biol. Chem. 263, 19827–19832 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, B., Helms, L., DesJarlais, R. et al. A paradigm for drug discovery using a conformation from the crystal structure of a presentation scaffold. Nat Struct Mol Biol 2, 1131–1137 (1995). https://doi.org/10.1038/nsb1295-1131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1131

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing