Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution

Abstract

Improved refinement of the crystal structure of GroEL from Escherichia coli has resulted in a complete atomic model for the first 524 residues. A new torsion-angle dynamics method and non-crystallographic symmetry restraints were used in the refinement. The model indicates that conformational variability exists due to rigid-body movements between the apical and intermediate domains of GroEL, resulting in deviations from strict seven-fold symmetry. The regions of the protein involved in polypeptide and GroES binding show unusually high B factors; these values may indicate mobility or discrete disorder. The variability of these regions may play a role in the ability of GroEL to bind a wide variety of substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–30 (1973).

    CAS  PubMed  Google Scholar 

  2. Ellis, J. Proteins as molecular chaperones. Nature 328, 378–379 (1987).

    CAS  PubMed  Google Scholar 

  3. Horwich, A.L., Low, K.B., Fenton, W.A., Hirshfield, I.N. & Furtak, K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Horwich, A.L. & Willison, K.R. Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. Phil. Trans. R. Soc. London B 339 313–326 (1993).

    Article  CAS  Google Scholar 

  5. Braig, K., Simon, M., Furuya, F., Hainfeld, J.F. & Horwich, A.L. A polypeptide bound by the chaperonin GroEL is localized within a central cavity. PNAS 90, 397–882 (1993).

    Article  Google Scholar 

  6. Martin, J. et al. Chaperonin-mediated protein folding at the surface of GroEL through a “molten globule”-like intermediate. Nature 352, 36–42 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Landry, S.J., Jordan, R., McMacken, R. & Gierasch, L.M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355, 455–457 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Harris, J.R., Pluckthun, A. & Zahn, R. Transmission electron microscopy of GroEL, GroES, and the symmetrical GroEL/ES complex. J. of Struct. Biol. 112, 216–230 (1994).

    Article  CAS  Google Scholar 

  9. Jackson, G.S. et al. Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 32, 2554–2563 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Todd, M.J., Viitanen, P.V. & Lorimer, G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659–666 (1993).

    Article  Google Scholar 

  11. Weissman, J.S., Kashi, Y., Fenton, W.A. & Horwich, A.L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78, 693–702 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Braig, K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614–619 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Hendrickson, W.A. Stereochemically restrained refinement of macromolecular structures. Meths. Enzymol. 115, 252–270 (1985).

    Article  CAS  Google Scholar 

  15. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  16. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  PubMed  Google Scholar 

  17. Rice, L.M. & Brünger, A.T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement. Proteins: Struct. Funct. Genet. 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  18. Weis, W.I., Brünger, A.T., Skehel, J.J. & Wiley, D.C. Refinement of the influenza virus haemagglutinin by simulated annealing. J. molec. Biol. 212, 737–761 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  20. Brünger, A.T. X-PLOR Version 3.1 (Yale University, New Haven, CT, 1992)

    Google Scholar 

  21. Read, R.J., Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140–149 (1986).

    Article  CAS  Google Scholar 

  22. Brünger, A.T. Crystallographic refinement by simulated annealing:application to a 2.8Å resolution structure of aspartate aminotransferase. J. molec. Biol. 203, 803–816 (1988).

    Article  PubMed  Google Scholar 

  23. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. app. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  24. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. & Thornton, J.M. Stereochemical quality of protein structure coordinates. Proteins 12, 345–364 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Luzzati, P.V. Traitement statistique des erreurs dans la determination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  26. Weissman, J.S. et al. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell 83, 1–20 (1995).

    Article  Google Scholar 

  27. Kleywegt, G.J. et al. Crystal structure of cellular retinoic acid binding proteins I and II in complex with all- trans -retinoic acid and a synthetic retinoid. Structure 2, 1241–1258 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Brünger, A.T. The free Rvalue: A more objective statistic for crystallography. Meths. Enzymol. in the press.

  29. Viitanen, P.V., Gatenby, A.A. & Lorimer, G.H. Purified chaperonin 60 (GroEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Prot. Sci. 1, 363–369 (1992).

    Article  CAS  Google Scholar 

  30. Chen, S., Roseman, A.M., Hunter, A.S., Wood, S.P., Burston, S.G., Ranson, N.A., Clarke, A.R. & Saibil, H.R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371, 261–264 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Haiti, F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accomodates the protein substrate within its central cavity. EMBO J. 11, 4757–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Letts. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  33. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Cryst. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  34. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. & Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  35. Hockney, R.W. & Eastwood, J.W. Computer simulation using particles. (McGraw-Hill, New York, 1981).

    Google Scholar 

  36. Hutchinson, G. & Thornton, J. Promotif A program to analyse structural motifs in a protein, (manuscript in preparation).

  37. Lüthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article  PubMed  Google Scholar 

  38. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. molec. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  39. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  40. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2. 0. A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  41. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braig, K., Adams, P. & Brünger, A. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 Å resolution. Nat Struct Mol Biol 2, 1083–1094 (1995). https://doi.org/10.1038/nsb1295-1083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing