Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of Escherichia coli exonuclease I suggests how processivity is achieved

Abstract

Exonuclease I (ExoI) from Escherichia coli is a monomeric enzyme that processively degrades single stranded DNA in the 3′ to 5′ direction and has been implicated in DNA recombination and repair. Determination of the structure of ExoI to 2.4 Å resolution using X-ray crystallography verifies the expected correspondence between a region of ExoI and the exonuclease (or proofreading) domains of the DNA polymerases. The overall fold of ExoI also includes two other regions, one of which extends the exonuclease domain and another that can be described as an elaborated SH3 domain. These three regions combine to form a molecule that is shaped like the letter C, although it also contains a segment that effectively converts the C into an O-like shape. The structure of ExoI thus provides additional support for the idea that DNA metabolizing enzymes achieve processivity by completely enclosing the DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ExoI is a member of the DnaQ superfamily.
Figure 2: The structure of ExoI.
Figure 3: Comparison of ExoI with DNA polymerase.
Figure 4: Substrate binding.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kuzminov, A. In Recombinational repair of DNA damage (R.G. Landes Co., Austin; 1996).

    Google Scholar 

  2. Kushner, S., Nagaishi, H., Templin, A. & Clark, A.J. Proc. Natl. Acad. Sci. USA 68, 824– 827 (1971).

    Article  CAS  Google Scholar 

  3. Razavy, H., Szigety, S.K. & Rosenberg, S.M. Genetics 142, 333– 339 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng, W-Y. & Hays, J.B. Genetics 140, 1175–1186 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sandigursky, M. & Franklin, W.A. Nucleic Acids Res. 20, 4699–4703 ( 1992).

    Article  CAS  Google Scholar 

  6. Bzymek, M., Saveson, C.J., Feschenko, V.V. & Lovett, S.T. J. Bacteriol. 181, 477–482 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Viswanathan, M. & Lovett, S. Genetics 149, 7–16 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Koonin, E. Curr. Biol. 7, R604–R606 (1997).

    Article  CAS  Google Scholar 

  9. Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. Nucleic Acids. Res. 25, 5110–5118 (1997).

    Article  CAS  Google Scholar 

  10. Bernad, A., Blanco, L., Lazaro, J.M., Martin, G. & Salas, M. Cell 59, 219 –228 (1989).

    Article  CAS  Google Scholar 

  11. Lehman, I. & Nussbaum, A. J. Biol. Chem. 239, 2628–2636 (1964).

    CAS  PubMed  Google Scholar 

  12. Lehman, I. J. Biol. Chem. 235, 1479–1487 (1960).

    CAS  PubMed  Google Scholar 

  13. Thomas, K. & Olivera, B. J. Biol. Chem. 253, 424–429 (1978).

    CAS  PubMed  Google Scholar 

  14. Brody, R.S., Doherty, K.G. & Zimmerman, P.D. J. Biol. Chem. 261, 7136– 7143 (1986).

    CAS  PubMed  Google Scholar 

  15. Brody, R.S. Biochemistry 30, 7072–7080 (1991).

    Article  CAS  Google Scholar 

  16. Krishna, T.S.R., Kong, X-P., Gary, S., Burgers, P.M. & Kuriyan, J. Cell 79 , 1233–1243 (1994).

    Article  CAS  Google Scholar 

  17. Kovall, R. & Matthews, B.W. Science 277, 1824–1827 (1997).

    Article  CAS  Google Scholar 

  18. Hingorani, M. & O'Donnell, M. Curr. Biol. 8, R83–R86 (1998).

    Article  CAS  Google Scholar 

  19. Prasher, D.C., Conarro, L. & Kushner, S.R. J. Biol. Chem. 258, 6340–6343 (1983).

    CAS  PubMed  Google Scholar 

  20. Holm, L. & Sander, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  21. Musacchio, A., Wilmanns, M. & Saraste, M. Prog. Biophys. Molec. Biol. 61, 283–297 (1994).

    Article  CAS  Google Scholar 

  22. Brautigam, C.A., Sun, S., Piccirili, J.A. & Steitz, T.A. Biochemistry 38, 696–704 (1999).

    Article  CAS  Google Scholar 

  23. Beese, L.S. & Steitz, T.A. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  24. Derbyshire, V., Pinsonneault, J.K. & Joyce, C.M. Methods Enzymol. 262 , 363–385 (1995).

    Article  CAS  Google Scholar 

  25. Brody, R.S. & Doherty, K.G. Biochemistry 24, 2072–2076 (1985).

    Article  CAS  Google Scholar 

  26. Ceska, T.A., Sayers, J.R., Stier, G. & Suck, D. Nature 382, 90–93 (1996).

    Article  CAS  Google Scholar 

  27. Divne, C., Stahlberg, J., Teeri, T.T. & Jones, T.A. J. Mol. Biol. 275, 309–325 (1998).

    Article  CAS  Google Scholar 

  28. Parsiegla, G. et al. EMBO J. 17, 5551–5562 (1998).

    Article  CAS  Google Scholar 

  29. Gassner, N.C., Baase, W.A., Hausrath, A.C. & Matthews, B.W. J. Mol. Biol. 294, 17–20 (1999).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  32. de La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–494 ( 1997).

    Article  CAS  Google Scholar 

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  34. Tronrud, D.E. Methods Enzymol. 277, 306–319 (1997).

    Article  CAS  Google Scholar 

  35. Brunger, A.T. et al. Acta Crystallogr. D 54, 905– 921 (1998).

    Article  CAS  Google Scholar 

  36. Carson, M. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  37. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 282 ( 1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Gay for providing the DH5α genome and for excellent technical assistance, R. Kovall for assistance and critical reading of the manuscript, I. Korndoerfer and M. Elsliger for help with computing aspects, P. Kuhn and A. Cohen for help with data collection at the SSRL and R. Kingston for critical reading of the manuscript. This work was supported in part by an NIH grant (to B.W.M.) and is based in part upon data collected at SSRL which is funded by the DOE and the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. Matthews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breyer, W., Matthews, B. Structure of Escherichia coli exonuclease I suggests how processivity is achieved. Nat Struct Mol Biol 7, 1125–1128 (2000). https://doi.org/10.1038/81978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing