Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Point mutations alter the mechanical stability of immunoglobulin modules

Abstract

Immunoglobulin-like modules are common components of proteins that play mechanical roles in cells such as muscle elasticity and cell adhesion. Mutations in these proteins may affect their mechanical stability and thus may compromise their function. Using single molecule atomic force microscopy (AFM) and protein engineering, we demonstrate that point mutations in two β-strands of an immunoglobulin module in human cardiac titin alter the mechanical stability of the protein, resulting in mechanical phenotypes. Our results demonstrate a previously unrecognized class of phenotypes that may be common in cell adhesion and muscle proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point mutations in an immunoglobulin module alter its mechanical stability.
Figure 2: Magnitude and kinetics of forced unfolding of mutant proteins.
Figure 3: Refolding kinetics of the I27 polyproteins.
Figure 4: Free energy diagram for the mechanical unfolding and refolding of the I27 module and its mutants.

Similar content being viewed by others

References

  1. Erickson, H.P. Proc. Natl. Acad. Sci. USA 91, 10114–10118 (1994).

    Article  CAS  Google Scholar 

  2. Ohashi, T., Kiehart, D.P. & Erickson, H.P. Proc. Natl. Acad. Sci. USA 96, 2153–2158 (1999).

    Article  CAS  Google Scholar 

  3. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  4. Casasnovas, J.M., Stehle, T., Liu, J.H., Wang, J.H. & Springer, T.A. Proc. Natl. Acad. Sci. USA 95, 4134–4139 (1998).

    Article  CAS  Google Scholar 

  5. Rief, M., Pascual, J., Saraste, M. & Gaub, H.E. J. Mol. Biol. 286, 553–541 (1999).

    Article  CAS  Google Scholar 

  6. Labeit, S. & Kolmerer, B. Science 270, 293–296 (1995).

    Article  CAS  Google Scholar 

  7. Linke, W.A. et al. J. Cell Biol. 146, 631–644 (1999).

    Article  CAS  Google Scholar 

  8. Trombitas, K.M. et al. J. Cell Biol. 140, 853–859 (1998).

    Article  CAS  Google Scholar 

  9. Chothia, C. & Jones, E.Y. Annu. Rev. Biochem. 66, 823–862 (1997).

    Article  CAS  Google Scholar 

  10. Bateman, A. et al. EMBO J. 15, 6050–6059 (1996).

    Article  CAS  Google Scholar 

  11. Kenwrick, J.J. In Ig superfamily molecules in the nervous system. (ed., Sonderegger, P.) 287–303 (Harwood, Amsterdam; 1998).

    Google Scholar 

  12. Carrion-Vazquez, M. et al. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  13. Carrion-Vazquez, M., Marszalek, P.E., Oberhauser, A.F. & Fernandez, J.M. Proc. Natl. Acad. Sci. USA 96, 11288–11292 (1999).

    Article  CAS  Google Scholar 

  14. Oberhauser, A.F., Marszalek, P.E., Carrion-Vazquez, M. & Fernandez, J.M. Nature Struct. Biol. 6, 1025–1028 (1999).

    Article  CAS  Google Scholar 

  15. Li, H.B., Oberhauser, A.F., Fowler, S.B., Clarke, J. & Fernandez, J.M. Proc. Natl. Acad. Sci. USA 97, 6527–6531 (2000).

    Article  CAS  Google Scholar 

  16. Marszalek, P.E. et al. Nature 402, 100–103 (1999).

    Article  CAS  Google Scholar 

  17. Improta, S., Politou, A.S. & Pastore, A. Structure 4, 323–337 (1996).

    Article  CAS  Google Scholar 

  18. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Biophys. J. 75, 662–671 (1998).

    Article  CAS  Google Scholar 

  19. Lu, H. & Schulten, K. Biophys. J. 79, 51–65 (2000).

    Article  CAS  Google Scholar 

  20. Paci, E. & Karplus, M. Proc. Natl. Acad. Sci. USA 97, 6521–6526 (2000).

    Article  CAS  Google Scholar 

  21. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Science 276, 1109–1112 (1997)

    Article  CAS  Google Scholar 

  22. Wood, S.J., Wetzel, R., Martin, J.D. & Hurle, M.R. Biochemistry 34, 724–730 (1995).

    Article  CAS  Google Scholar 

  23. Rief, M., Fernandez, J.M. & Gaub H.E. Phys. Rev. Lett., 81, 4764–4767 (1998)

    Article  CAS  Google Scholar 

  24. Kellermayer, M., Smith, S., Granzier, H. & Bustamante, C. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  25. Tskhovrebova, L., Trinick, J., Sleep, J.A. & Simmons, R.M. Nature 387, 308–312 (1997).

    Article  CAS  Google Scholar 

  26. Hutter, J.L. & Bechhoffer, J. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  27. Florin, E.L. et al. Biosens. Bioelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Badilla-Fernandez and J. Kerkvliet for their help in polyprotein engineering. This work was supported by National Institute of Health grants to J.M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Carrion-Vazquez, M., Oberhauser, A. et al. Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Mol Biol 7, 1117–1120 (2000). https://doi.org/10.1038/81964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing