Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils

Abstract

We report here that a monomeric de novo designed α-helix-turn-α-helix peptide, αtα, when incubated at 37 °C in an aqueous buffer at neutral pH, forms nonbranching, protease resistant fibrils that are 6–10 nm in diameter. These fibrils are rich in β-sheet and bind the amyloidophilic dye Congo red. αtα fibrils thus display the morphologic, structural, and tinctorial properties of authentic amyloid fibrils. Surprisingly, unlike fibrils formed by peptides such as the amyloid β-protein or the islet amyloid polypeptide, αtα fibrils were not toxic to cultured rat primary cortical neurons or PC12 cells. These results suggest that the potential to form fibrils under physiologic conditions is not limited to those proteins associated with amyloidoses and that fibril formation alone is not predictive of cytotoxic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibril formation by αtα.
Figure 2: Conformational stability of αtα.
Figure 3: Stereo view of αtα showing the charged residues located near the hydrophobic interface.
Figure 4: Temporal changes in the secondary structure of αtα during fibrillogenesis.
Figure 5: Effect of amyloid peptides on MTT formazan formation by PC12 cells.

Similar content being viewed by others

References

  1. Kelly, J.W. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  2. Pike, C.J., Burdick, D., Walencewicz, A.J., Glabe, C.G. & Cotman, C.W. J. Neurosci. 13, 1676–1687 (1993).

    Article  CAS  Google Scholar 

  3. Lambert, M.P. et al. Proc. Natl. Acad. Sci. USA 95, 6448 –6453 (1998).

    Article  CAS  Google Scholar 

  4. Walsh, D.M. et al. J. Biol. Chem. 274, 25945– 25952 (1999).

    Article  CAS  Google Scholar 

  5. Hartley, D.M. et al. J. Neurosci. 19, 8876– 8884 (1999).

    Article  CAS  Google Scholar 

  6. Chiti, F. et al. Proc. Natl. Acad. Sci. USA 96, 3590– 3594 (1999).

    Article  CAS  Google Scholar 

  7. Guijarro, J.I., Sunde, M., Jones, J.A., Campbell, I.D. & Dobson, C.M. Proc. Natl. Acad. Sci. USA 95, 4224–4228 ( 1998).

    Article  CAS  Google Scholar 

  8. Gross, M. et al. Protein Sci. 8, 1350– 1357 (1999).

    Article  CAS  Google Scholar 

  9. Fezoui, Y., Weaver, D.L. & Osterhout, J.J. Proc. Natl. Acad. Sci. USA 91, 3675–3679 (1994).

    Article  CAS  Google Scholar 

  10. Fezoui, Y., Connolly, P.J. & Osterhout, J.J. Protein Sci. 6, 1869– 1877 (1997).

    Article  CAS  Google Scholar 

  11. Goldsbury, C.S. et al. J. Struct. Biol. 119, 17– 27 (1997).

    Article  CAS  Google Scholar 

  12. Harper, J.D., Lansbury, P.T.., Jr. Annu. Rev. Biochem. 66, 385–407 ( 1997).

    Article  CAS  Google Scholar 

  13. Glenner, G.G. Prog. Histochem. Cytochem. 13, 1–37 (1981).

    Article  CAS  Google Scholar 

  14. Fezoui, Y., Braswell, E.H., Xian, W. & Osterhout, J.J. Biochemistry 38, 2796–2804 (1999).

    Article  CAS  Google Scholar 

  15. Chakrabartty, A., Kortemme, T. & Baldwin, R.L. Protein Sci. 3, 843–852 (1994).

    Article  CAS  Google Scholar 

  16. Fezoui, Y., Weaver, D.L. & Osterhout, J.J. Protein Sci. 4, 286– 295 (1995).

    Article  CAS  Google Scholar 

  17. Lumb, K.J. & Kim, P.S. Science 268 , 436–439 (1995).

    Article  CAS  Google Scholar 

  18. Zhou, N.E., Kay, C.M. & Hodges, R.S. Protein Eng. 7, 1365– 1372 (1994).

    Article  CAS  Google Scholar 

  19. Kuwajima, K. In Circular dichroism and the conformational analysis of biomolecules (ed., Fasman, G.D.) 159–182 (Plenum Press, New York; 1996).

    Book  Google Scholar 

  20. Harrison, P.M., Bamborough, P., Daggett, V., Prusiner, S.B. & Cohen, F.E. Curr. Opin. Struct. Biol. 7, 53–59 ( 1997).

    Article  CAS  Google Scholar 

  21. Lai, Z., Colon, W. & Kelly, J.W. Biochemistry 35, 6470– 6482 (1996).

    Article  CAS  Google Scholar 

  22. Booth, D.R. et al. Nature 385, 787–793 (1997).

    Article  CAS  Google Scholar 

  23. Takahashi, Y., Ueno, A. & Mihara, H. Bioorg. Med. Chem. 7, 177– 185 (1999).

    Article  CAS  Google Scholar 

  24. Mihara, H., Takahashi, Y. & Ueno, A. Biopolymers 47, 83– 92 (1998).

    Article  CAS  Google Scholar 

  25. Takahashi, Y., Ueno, A. & Mihara, H. Chem. Eur. J. 4, 2475– 2484 (1998).

    Article  CAS  Google Scholar 

  26. Geula, C. et al. Nature Med. 4, 827–831 (1998).

    Article  CAS  Google Scholar 

  27. Abe, K. & Saito, H. Brain Res. 830, 146–154 (1999).

    Article  CAS  Google Scholar 

  28. Cooper, G.J. et al. Proc. Natl. Acad. Sci. USA 84, 8628 –8632 (1987).

    Article  CAS  Google Scholar 

  29. Walsh, D.M., Lomakin, A., Benedek, G.B., Condron, M.M. & Teplow, D.B. J. Biol. Chem. 272, 22364–22372 (1997).

    Article  CAS  Google Scholar 

  30. Fezoui, Y. et al. Amyloid: Int. J. Exp. Clin. Invest. 7, 166–178 (2000).

    Article  CAS  Google Scholar 

  31. Koradi, R., Billeter, M. & Wuthrich, K. J. Mol. Graphics 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Lemere for assistance with the birefringence experiment, A. Bissello for performing mass spectroscopy, S. Vasquez for preparation of primary neuronal cultures, and M. Condron for peptide synthesis and amino acid analysis. This work was supported by grants from the National Institutes of Health (D.B.T., D.J.S., and Y.F.), and by the Foundation for Neurologic Diseases (D.B.T and D.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youcef Fezoui or David B. Teplow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fezoui, Y., Hartley, D., Walsh, D. et al. A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils. Nat Struct Mol Biol 7, 1095–1099 (2000). https://doi.org/10.1038/81937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing