Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Folding alphabets

Abstract

A new computational approach optimizes searches for reduced protein folding alphabets that use fewer than 20 types of amino acids. The predicted optimal five-letter alphabet happens to be in agreement with the suggestive results of a recent experiment, but whether highly reduced alphabets are sufficient for truly protein-like properties remains an open experimental question.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of how optimized reduced alphabets are deduced by the mismatch minimization procedure of Wang and Wang.
Figure 2: Reduced alphabets by mismatch minimization follow an approximate hydrophobicity scale.

References

  1. Wong, J.T.-F. Proc. Natl. Acad. Sci. USA 72, 1909– 1912 (1975).

    Article  CAS  Google Scholar 

  2. Wolynes, P.G. Nature Struct. Biol. 4, 871–874 (1997).

    Article  CAS  Google Scholar 

  3. Meewes, M., Rička, J., de Silva, R., Nyffenegger, R. & Binkert, T. Macromolecules 24, 5811–5816 (1991).

    Article  CAS  Google Scholar 

  4. Wang, J. & Wang, W. Nature Struct. Biol. 6, 1033–1038 (1999).

    Article  CAS  Google Scholar 

  5. Morita, K., Simons, E.R. & Blout, E.R. Biopolymers 5, 259– 271 (1967).

    Article  CAS  Google Scholar 

  6. Rao, S.P., Carlstrom, D.E. & Miller, W.G. Biochemistry 13, 943– 952 (1974).

    Article  CAS  Google Scholar 

  7. Munson, M., O'Brien, R., Sturtevant, J.M. & Regan, L. Protein Sci. 3, 2015–2022 (1994).

    Article  CAS  Google Scholar 

  8. Rojas, N.R.L. et al. Protein Sci. 6, 2512– 2524 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Riddle, D.S. et al. Nature Struct. Biol. 4, 805– 809 (1997).

    Article  CAS  Google Scholar 

  10. Brown, B.M. & Sauer, R.T. Proc. Natl. Acad. Sci. USA 96, 1983–1988 (1999).

    Article  CAS  Google Scholar 

  11. Plaxco, K.W., Riddle, D.S., Grantcharova, V. & Baker, D. Curr. Opin. Struct. Biol. 8, 80–85 (1998).

    Article  CAS  Google Scholar 

  12. Davidson, A.R., Lumb, K.J. & Sauer, R.T. Nature Struct. Biol. 2, 856– 864 (1995).

    Article  CAS  Google Scholar 

  13. Yamauchi, A. et al. FEBS Lett. 421, 147– 151 (1998).

    Article  CAS  Google Scholar 

  14. Sicheri, F. & Yang, D.S. Nature 375, 427–431 (1995).

    Article  CAS  Google Scholar 

  15. Schafmeister, C.E., LaPorte, S.L., Miercke, L.J.W. & Stroud, R.M. Nature Struct. Biol. 4, 1039–1042 (1997).

    Article  CAS  Google Scholar 

  16. Miyazawa, S. & Jernigan, R.L. J. Mol. Biol. 256, 623–644 (1996).

    Article  CAS  Google Scholar 

  17. Tanaka, S. & Scheraga, H.A. Macromolecules 9, 954–950 (1976).

    Google Scholar 

  18. Miyazawa, S. & Jernigan, R.L. Macromolecules 18, 534–552 (1985).

    Article  CAS  Google Scholar 

  19. Godzik, A., Koli′nski, A. & Skolnick, J. Protein Sci. 4, 2107– 2117 (1995).

    Article  CAS  Google Scholar 

  20. Li, H., Tang, C. & Wingreen, N.S. Phys. Rev. Lett. 79, 765– 768 (1997).

    Article  CAS  Google Scholar 

  21. Thirumalai, D. & Klimov, D.K. Fold. Des. 3, R112–R118 (1998).

    Article  CAS  Google Scholar 

  22. Thomas, P.D. & Dill, K.A. J. Mol. Biol. 257, 457–469 (1996).

    Article  CAS  Google Scholar 

  23. Mirny, L.A. & Shakhnovich, E.I. J. Mol. Biol. 264, 1164–1179 (1996).

    Article  CAS  Google Scholar 

  24. Socci, N.D. & Onuchic, J.N. J. Chem. Phys. 103, 4732–4744 (1995).

    Article  CAS  Google Scholar 

  25. Chan, H.S. & Dill, K.A. Proteins Struct. Funct. Genet. 30, 2–33 (1998).

    Article  CAS  Google Scholar 

  26. Sorenson, J.M. & Head-Gordon, T. Fold. Des. 3, 523–534 ( 1998).

    Article  CAS  Google Scholar 

  27. Park, B.H., Huang, E.S. & Levitt, M. J. Mol. Biol. 266, 831– 846 (1997).

    Article  CAS  Google Scholar 

  28. Domany, E., Najmanovich, R. & Vendruscolo, M. In Monte carlo approach to biopolymers and protein folding (eds Grassberger, P., Barkema, G.T. & Nadler, W.) 194– 210 (World Scientific, Singapore; 1998).

    Google Scholar 

  29. Betancourt, M.R. & Thirumalai, D. Protein Sci. 8, 361–369 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am very grateful to A. R. Davidson for communicating unpublished results and for critically reading this manuscript. I also thank M. Gross, S.L. LaPorte, K.W. Plaxco,D. Thirumalai, and T. Yomo for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, H. Folding alphabets. Nat Struct Mol Biol 6, 994–996 (1999). https://doi.org/10.1038/14876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/14876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing