Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor

Abstract

Metal ions are essential for the folding and activity of large catalytic RNAs. While divalent metal ions have been directly implicated in RNA tertiary structure formation, the role of monovalent ions has been largely unexplored. Here we report the first specific monovalent metal ion binding site within a catalytic RNA. As seen crystallographically, a potassium ion is coordinated immediately below AA platforms of the Tetrahymena ribozyme P4-P6 domain, including that within the tetraloop receptor. Interference and kinetic experiments demonstrate that potassium ion binding within the tetraloop receptor stabilizes the folding of the P4-P6 domain and enhances the activity of the Azoarcus group I intron. Since a monovalent ion binding site is integral to the tetraloop receptor, a tertiary structural motif that occurs frequently in RNA, monovalent metal ions are likely to participate in the folding and activity of a wide diversity of RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adenosine platforms within the P4-P6 domain of the Tetrahymena group I intron9.
Figure 2: Thallium binding sites in the P4-P6 domain.
Figure 3: Nucleotide analog interference mapping of the P4-P6 domain with S6GαS.
Figure 4: Interference mapping of the Azoarcus group I intron.

Similar content being viewed by others

References

  1. Pyle, A.M. Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714 (1993).

    Article  CAS  Google Scholar 

  2. Pyle, A.M. Catalytic reaction mechanisms and structural features of group II intron ribozymes. in Catalytic RNA, Vol. 10 (eds Eckstein, F. & Lilley, D.M.J.) 75–107 (Springer, New York; 1996).

    Article  Google Scholar 

  3. Nolan, J.M. & Pace, N.R. Structural analysis of the bacterial ribonuclease P RNA. in Catalytic RNA, Vol. 10 (eds. Eckstein, F. & Lilley, D.M.J.) 109–128 (Springer, New York; 1996).

    Article  Google Scholar 

  4. Miskin, R., Zamir, A. & Elson, D. Inactivation and reactivation of ribosomal subunits: the peptidyl transferase activity of the 50S subunit of Escherichia coli. J. Mol. Biol. 54, 355– 378 (1970).

    Article  CAS  Google Scholar 

  5. Zamir, A., Miskin, R. & Elson, D. Inactivation and reactivation of ribosomal subunits: amino acyl-transfer RNA binding activity of the 30S subunit of Escherichia coli. J. Mol. Biol. 60, 347– 364 (1971).

    Article  CAS  Google Scholar 

  6. Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quart. Rev. Biophys. 2, 179–246 ( 1978).

    Article  Google Scholar 

  7. Costa, M. & Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  Google Scholar 

  8. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678– 1685 (1996).

    Article  CAS  Google Scholar 

  9. Cate, J.H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996).

    Article  CAS  Google Scholar 

  10. Murphy, F.L. & Cech, T.R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236, 49–63 ( 1994).

    Article  CAS  Google Scholar 

  11. Cate, J.H., Hanna, R.L. & Doudna, J.A. A magnesium ion core at the heart of a ribozyme domain. Nature Struct. Biol. 4, 553– 558 (1997).

    Article  CAS  Google Scholar 

  12. Cate, J.H. & Doudna, J.A. Metal-binding sites in the major groove of a large ribozyme domain. Structure 4, 1221–1229 (1996).

    Article  CAS  Google Scholar 

  13. Pauling, L. The Nature of the Chemical Bond, (Cornell University Press, Ithaca, NY, 1960).

    Google Scholar 

  14. Gaur, R.K. & Krupp, G. Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucleic Acids Res. 21, 21– 26 (1993).

    Article  CAS  Google Scholar 

  15. Strobel, S.A. & Shetty, K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl. Acad. Sci. USA 94, 2903–2908 (1997).

    Article  CAS  Google Scholar 

  16. Pearson, R.G. Acids and Bases. Science 151, 172– 177 (1966).

    Article  CAS  Google Scholar 

  17. Heitner, H.I., Lippard, S.J. & Sunshine, H.R. Metal binding by thionucleosides. J. Amer. Chem. Soc. 94, 8936–8937 (1972).

    Article  CAS  Google Scholar 

  18. Gish, G. & Eckstein, F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522 (1988).

    Article  CAS  Google Scholar 

  19. Boeyens, J.C.A. & Herbstein, F.H. Ionic complexes of thiourea. II. Chemical and crystallographic survey and determination of the crystal structures of some representative complexes. Inorg. Chem. 6, 1408–1425 ( 1967).

    Article  CAS  Google Scholar 

  20. Ortoleva-Donnelly, L., Szewczak, A.A., Gutell, R.R. & Strobel, S.A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498– 519 (1998).

    Article  CAS  Google Scholar 

  21. Reinhold-Hurek, B. & Shub, D.A. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357, 173–176 (1992).

    Article  CAS  Google Scholar 

  22. Tanner, M.A. & Cech, T.R. Activity and thermostability of the small self-splicing group I intron in the pre-tRNAlle of the purple bacterium Azoarcus. RNA 2, 74–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Beaudry, A.A. & Joyce, G.F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    Article  CAS  Google Scholar 

  24. Michel, F., Hanna, M., Green, R., Bartel, D.P. & Szostak, J.W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391– 395 (1989).

    Article  CAS  Google Scholar 

  25. Michel, F., Ellington, A.D., Couture, S. & Szostak, J.W. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature 347, 578– 580 (1990).

    Article  CAS  Google Scholar 

  26. Pecoraro, V.L., Hermes, J.D. & Cleland, W.W. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry 23, 5262–5271 ( 1984).

    Article  CAS  Google Scholar 

  27. Villeret, V., Huang, S., Fromm, H.J. & Lipscomb, W.N. Crystallographic evidence for the action of potassium, thallium, and lithium on fructose-1,6-bisphosphatase. Proc. Natl. Acad. Sci. USA 92, 8916– 8920 (1995).

    Article  CAS  Google Scholar 

  28. Wilbanks, S.M. & McKay, D.B. How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J. Mol. Biol. 270, 2251–2257 (1995).

    CAS  Google Scholar 

  29. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  30. Rosenberg, J.M. et al. Double helix at atomic resolution. Nature 243, 150–154 ( 1973).

    Article  CAS  Google Scholar 

  31. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871– 880 (1989).

    Article  CAS  Google Scholar 

  32. Cheong, C. & Moore, P.B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry 31, 8406–8414 ( 1992).

    Article  CAS  Google Scholar 

  33. Laughlan, G. et al. The high resolution crystal structure of a parallel-stranded guanine tetraplex. Nature 265, 520– 524 (1994).

    CAS  Google Scholar 

  34. Sundquist, W.I. & Heaphy, S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc. Natl. Acad. Sci. USA 90, 3393–3397 (1993).

    Article  CAS  Google Scholar 

  35. Wang, Y.-W., Lu, M. & Draper, D.E. Specific ammonium ion requirement for functional ribosomal RNA tertiary structure. Biochemistry 32, 12279–12282 (1993).

    Article  CAS  Google Scholar 

  36. Cox, B.G. & Schneider, H. Coordination and Transport Properties of Macrocyclic Compounds in Solution (Elsevier Science Publishers, New York; 1992).

    Google Scholar 

  37. Brown, I.B. What factors determine cation coordination numbers? Acta Crystallogr. B 44, 545–553 ( 1988).

    Article  Google Scholar 

  38. Hinton, J.F., Turner, G. & Millett, F.S. Thallous ion interaction with gramicidin incorporated in micelles studied by thallium-205 NMR. Biochemistry 21, 651–654 (1982).

    Article  CAS  Google Scholar 

  39. Hinton, J.F., Whaley, W.L., Shungu, D., Koeppe, R.E. & Millett, F.S. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and Tl+-205 nuclear magnetic resonance spectroscopy. Biophys. J. 50, 539–544 (1986).

    Article  CAS  Google Scholar 

  40. Doudna, J.A., Grosshans, C., Gooding, A. & Kundrot, C.E. Crystallization of ribozymes and small RNA motifs by a sparce matrix approach. Proc. Natl. Acad. Sci. USA 90, 7829 (1993).

    Article  CAS  Google Scholar 

  41. Arabshahi, A. & Frey, P.A. A simplified procedure for synthesizing nucleoside 1-thiotriphosphates: dATPαS, dGTPαS, UTPαS, and dTTPαS. Biochem. Biophys. Res. Com. 204, 150–155 (1994).

    Article  CAS  Google Scholar 

  42. Fox, J.J., Wempen, I., Hampton, A. & Doerr, I.L. Thiation of nucleosides. I. Synthesis of 2-amino-6-mercapto-9-ß-D-ribofuranosylpurine ("thioguanosine") and related purine nucleosides. J. Org. Chem. 80, 1669–1675 (1957).

    Google Scholar 

  43. Lingner, J. & Keller, W. 3'-end labeling of RNA with recombinant yeast poly(A) polymerase. Nucleic Acids Res. 21, 2917–2920 (1993).

    Article  CAS  Google Scholar 

  44. Carson, M. RIBBONS 2.0 J. Appl. Crystallogr. 47, 110 (1991).

    Google Scholar 

Download references

Acknowledgements

We wish to thank P. B. Moore and J. R. Williamson for critical comments on the manuscript. R.P.R. and J.H.C. were supported by the NIH and A.R.F is a Fellow of the Jane Coffin Childs Memorial Fund for Medical Research. J. S.-S. is a Fellow of the NIH. S.A.S. and J.A.D. are both supported by Beckman Young Investigator Awards and the Searle Foundation. J.A.D. is a Lucille P. Markey Scholar and a David and Lucile Packard Foundation Fellow. This work was funded by an NSF CAREER award and a JFRA from the ACS to S.A.S., and by an NIH grant to J.A.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott A. Strobel or Jennifer A. Doudna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., P. Rambo, R., Strauss-Soukup, J. et al. A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat Struct Mol Biol 5, 986–992 (1998). https://doi.org/10.1038/2960

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing