Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography

Abstract

Neutron quasi-Laue diffraction data (2 Å resolution) from tetragonal hen egg-white lysozyme were collected in ten days with neutron imaging plates. The data processing Laue software, LAUEGEN, developed for X-ray Laue diffractometry, was adapted for neutron diffractometry with a cylindrical detector. The data analysis software, X-PLOR, was modified and used for the refinement of hydrogen atoms, and the positions of 960 hydrogen atoms in the protein and 157 bound water molecules, were determined. Several examples are given of the methods used to identify hydrogen atoms and water molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bentley, G.A., Duee, E.D., Mason, S.A. & Nunes, A.C. Protein structure determination by neutron diffraction: lysozyme. J. Chim. Phys. 76, 817–821 (1979).

    Article  CAS  Google Scholar 

  2. Phillips, S.E.V. & Schoenborn, B.P. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 292, 81–82 (1981).

    Article  CAS  Google Scholar 

  3. Cheng, X. & Schoenborn, B.P. Hydration in protein crystals. A neutron diffraction analysis of carbonmonoxymyoglobin. Acta Crystallogr. B46, 195–208 (1990).

    Article  CAS  Google Scholar 

  4. Schoenborn, B.P. Solvent effect in protein crystals - A neutron diffraction analysis of solvent and ion density. J. Mol. Biol. 201, 741–749 (1988).

    Article  CAS  Google Scholar 

  5. Kossiakoff, A.A. & Spencer, S.A. Direct determination of protonation states of aspartic acid-102 and histidine-57 in the tetrahedral intermediate of the serine proteases: neutron structure of trypsin. Biochemistry 20, 6462–6474 (1981).

    Article  CAS  Google Scholar 

  6. Kossiakoff, A.A. & Spencer, S.A. Neutron diffraction identifies his-57 as the catalytic base in trypsin. Nature 288, 414–416 (1980).

    Article  CAS  Google Scholar 

  7. Finer-Moore, J.S., Kossiakoff, A.A., Hurley, J.H., Earnest, T. & Stroud, R.M. Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction. Proteins 12, 203–222 (1992).

    Article  CAS  Google Scholar 

  8. Kossiakoff, A.A., Sintchak, M.D., Shpungin, J. & Presta, L.G. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: Pattern of primary and secondary hydration of trypsin. Proteins 12, 223–236 (1992).

    Article  CAS  Google Scholar 

  9. Wlodawer, A., Miller, M. & Sjolin, L. Active site of RNase: neutron diffraction study of a complex with uridine vanadate, a transition-state analog. Proc. Natl. Acad. Sci. USA 80, 3628–3631 (1983).

    Article  CAS  Google Scholar 

  10. Wlodawer, A. & Sjolin, L. Hydrogen exchange in RNase A: Neutron diffraction study, Proc. Natl. Acad. Sci. USA 79, 1418–1422 (1982).

    Article  CAS  Google Scholar 

  11. Wlodawer, A., Borkakoti, N., Moss, D.S. & Howlin, B. Comparison of two independently refined models of RNase A. Acta Crystallogr. B42, 379–387 (1986).

    Article  CAS  Google Scholar 

  12. Wlodawer, A., Walter, J., Huber, R. & Sjolin, L. Structure of bovine pancreatic trypsin inhibitor - results of joint neutron and X-ray refinement of crystal form II. J. Mol. Biol. 180, 301–329 (1984).

    Article  CAS  Google Scholar 

  13. Wlodawer, A., Deisenhofer, J. & Huber, R. Comparison of two highly refined structures of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 193, 145–156 (1987).

    Article  CAS  Google Scholar 

  14. Schoenborn, B.P. Multilayer monochromators and supermirrors for neutron protein crystallography using a quasi Laue technique. SPIE (Society of Photo-optical instrumentation engineers) 1738, 192–198 (1992).

    CAS  Google Scholar 

  15. Wilkinson, C. & Lehmann, M.S., quasi-Laue neutron diffractometer. Kucl. Instrm. Meths A310, 411–415 (1991).

    Article  CAS  Google Scholar 

  16. Rausch, C., Bucherl, T., Gahler, R., Seggern, H. & Winnacker, A. Recent developments in neutron detection SPIE (Society of Photo-optical instrumentation engineers) 1737, 255–263 (1992).

    Google Scholar 

  17. Wilkinson, C., Gabriel, A., Lehmann, M.S., Zemb, T. & Né, F. Image plate neutron detector. SPIF (Society of Photo-optical instrumentation engineers) 1737, 324–329 (1992).

    Google Scholar 

  18. Niimura, N. et al. An imaging plate neutron detector. Nucl. Instrm. Meths A349, 521–525 (1994).

    Article  Google Scholar 

  19. Cipriani, F., Castagna, J.C., Lehmann, M.S. & Wilkinson, C. A large image-plate detector for neutrons. Physica B 213&214, 975–977 (1995).

    Article  Google Scholar 

  20. Ataka, M. & Katsura, T. A large single crystal of the tetragonal form of lysozyme can be grown in a concentration gradient of NiCI2. JAERI-M (Japan Atomic Energy Research Institute-Memos) 61, 92–213 (1992).

    Google Scholar 

  21. Mason, S.A., Bentley, G.A. & Mclntyre, G.J. Deuterium exchange in lysozyme at 1.4 Å resolution. Neutron in Biology, (ed Schoenborn, B.P.) 323–334 (Plenum Press, New York and London; 1984).

    Chapter  Google Scholar 

  22. Helliwell, J.R. et al. The recording and analysis of synchrotron X-radiation Laue diffraction photographs. J. Appl. Crystallogr. 22, 483–497 (1989).

    Article  CAS  Google Scholar 

  23. Cruickshank, D.W.J., Helliwell, J.R. & Moffat, K. Angular distribution of reflections in Laue diffraction. Acta Crystallogr. A47, 352–373 (1991).

    Article  CAS  Google Scholar 

  24. Clifton, I.J., Elder, M. & Hajdu, J. Experimental strategies in Laue crystallography. J. Appl. Crystallogr. 24, 267–277 (1991).

    Article  CAS  Google Scholar 

  25. Cruickshank, D.W.J., Carr, P.D. & Harding, M.M. Estimation of dmin, 〈lambda〉 min and 〈lambda〉 max from the gnomonic projections of Laue patterns. J. Appl. Crystallogr. 25, 285–293 (1992).

    Article  Google Scholar 

  26. Howell, P.L., Almo, S.C., Parsons, M.R., Harjdu, J. & Petsko, G.A. Structure determination of turkey egg-white lysozyme using Laue diffraction data. Acta Crystallogr. B48, 200–207 (1992).

    Article  CAS  Google Scholar 

  27. Hao, Q., Harding, M.M. & Campbell, J.W. Determination of dmin and min from the intensity distributions of Laue patterns. J. Appl. Crystallogr. 28, 447–450 (1995).

    Article  CAS  Google Scholar 

  28. Campbell, J.W., Harding, M.M. & Kariuki, B. Spatial-distortion corrections, for Laue diffraction patterns recorded on image plates, modelled using polynomial functions. J. Appl. Crystallogr. 28, 43–48 (1995).

    Article  CAS  Google Scholar 

  29. Campbell, J.W., Clifton, I.J., Harding, M.M. & Hao, Q. The Laue data module (LDM) — a software development for Laue X-ray diffraction data processing. J. Appl. Crystallogr. 28, 635–640 (1995).

    Article  CAS  Google Scholar 

  30. Campbell, J.W. LAUEGEN, an X-windows-based program for the processing of Laue X-ray diffraction data.J. Appl. Crystallogr. 28, 228–236 (1995).

    Article  CAS  Google Scholar 

  31. Vaney, M.C., Maignan, S., Ries-Kautt, M. & Ducruix, A., High resolution structure (1. 33 Å) of HEW lysozyme tetragonal crystal grown in the APCF Apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Crystallogr. D52, 505–517 (1996).

    CAS  Google Scholar 

  32. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics, Science 235, 458–460 (1987).

    Article  Google Scholar 

  33. Brünger, A.T. Crystallographic refinement by simulated annealing — Application to a 2.8 Å resolution structure of aspartate aminotransferase. J. Mol. Biol., 203, 803–816 (1988).

    Article  Google Scholar 

  34. Brünger, A.T., Crystallographic refinement by simulated annealing: Application to crambin. Acta Crystallogr. A45, 50–61 (1989).

    Article  Google Scholar 

  35. Brünger, A.T. X-PLOR Manual, New Haven, USA: Yale University.

  36. Phillips, D.C. The three-dimensional structure of an enzyme molecule. Sci. Am. 215, 78–90 (1966).

    Article  CAS  Google Scholar 

  37. Imoto, T., Johnson, L.N., North, A.C.T., Phillips, D.C. & Rupley, J.A. Vertebrate lysozymes. In The Enzymes (ed. Boyer, P.) 665–868 ( Academic Press, New Tork, 1972)

    Google Scholar 

  38. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. Merritt Ethan, A. & Murphy Michael, E.P. Raster 3D version 2.0: a program for photorealistic molecular graphics Acta Crystallogr. D50, 869–873 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Niimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niimura, N., Minezaki, Y., Nonaka, T. et al. Neutron Laue diffractometry with an imaging plate provides an effective data collection regime for neutron protein crystallography. Nat Struct Mol Biol 4, 909–914 (1997). https://doi.org/10.1038/nsb1197-909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1197-909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing