Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2

Abstract

The first crystal structure of human cyclooxygenase-2, in the presence of a selective inhibitor, is similar to that of cyclooxygenase-1. The structure of the NSAID binding site is also well conserved, although there are differences in its overall size and shape which may be exploited for the further development of selective COX-2 inhibitors. A second COX-2 structure with a different bound inhibitor displays a new, open conformation at the bottom of the NSAID binding site, without significant changes in other regions of the COX-2 structure. These two COX-2 structures provide evidence for the flexible nature of cyclooxygenase, revealing details about how substrate and inhibitor may gain access to the cyclooxygenase active site from within the membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goetzl, E.J., An, S. & Smith, W.L. Specificty of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J. 9, 1051–1058 (1995).

    Article  CAS  Google Scholar 

  2. Smith, W.L., Borgeat, P. & Fitzpatrick, F.A. The eicosanoids: cydoxygenase, lipoxygenase, and epoxygenase pathways. in Biochemistry of Lipids, Lipoproteins and Membranes (eds. D.E. Vance and J. Vance) 297–325 (Elesvier Science Publishers, 1991).

    Google Scholar 

  3. Kujubu, D.A., Fletcher, B.S., Varnum, B.C., Lim, R.W. & Herschman, H.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase. J. Biol. Chem. 266, 12866–12872 (1991).

    CAS  PubMed  Google Scholar 

  4. Hla, T. & Neilson, K. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci., USA 89, 7384–7388 (1992).

    Article  CAS  Google Scholar 

  5. Tazawa, R., Xu, X.M., Wu, K.K. & Wang, L.H. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Comm. 203, 190–199 (1994).

    Article  CAS  Google Scholar 

  6. Goppelt-Struebe, M. Regulation of Prostaglandin endoperoxide synthase (Cyclooxygenase) isozyme expression. Prostagl. Leukotr. Essen. Fatty Acids 52, 213–222 (1995).

    Article  CAS  Google Scholar 

  7. Morita, I. et al. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J. Biol. Chem. 270, 10902–10908 (1995).

    Article  CAS  Google Scholar 

  8. Lassmann, G., Odenwaller, R., Curtis, J.F., DeGray, J.A., Mason, R.P., Marnett, L.J. & Eling, T.E. Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase: Relation to enzyme catalysis. J. Biol. Chem. 266, 20045–2055 (1991).

    CAS  PubMed  Google Scholar 

  9. Shimokawa, T., Kulmacz, R.J., Dewitt, D.L. & Smith, W.L. Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis. J. Biol. Chem. 265, 20073–20076 (1990).

    CAS  PubMed  Google Scholar 

  10. Picot, D., Loll, P.J. & Garavito, R.M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367, 243–249 (1994).

    Article  CAS  Google Scholar 

  11. Smith, W.L., Eling, T.E., Kulmacz, R.J., Marnett, L.J. & Tsai, A. Tyrosyl radicals and their role in hydroperoxide dependent activation and inactivation of prostaglandin endoperoxide synthase. Biochem. 31, 3–7 (1992).

    Article  CAS  Google Scholar 

  12. Copeland, R.A. et al. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc. Natl. Acad. Sci. USA 91, 11202–11206 (1994).

    Article  CAS  Google Scholar 

  13. Garavito, R.M. Crystallizing membrane proteins: Experiments on different systems. in Crystallization of Membrane Proteins (eds. H. Michel) 89–105 (CRC Press, Boca Raton, 1991).

    Google Scholar 

  14. Barnett, J. et al. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Bioch. Biophys. Acata 1209, 130–139 (1994).

    Article  CAS  Google Scholar 

  15. Hope, H. Crystallography of biological macromolecules at ultra-low temperature. Annu. Rev. Biophys. Biophys. Chem. 19, 107–126 (1990).

    Article  CAS  Google Scholar 

  16. Abola, E.E., Berstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. Protein Data Bank. in Crystallographk Databases - Information Content, Software Systems, Scientific Applications. (eds F.H. Alien, G. Bergerhoff & R. Sievers) 107–132 (Data Commission of the International Union of Crystallography, Bonn, 1987).

    Google Scholar 

  17. Masferrer, J.L. et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulecerogenic. Proc. Natl. Acad Sci., USA 91, 3228–3232 (1994).

    Article  CAS  Google Scholar 

  18. Garavito, R.M., Picot, D. & Loll, P.J. The 3.1 Å X-ray crystal structure of the integral membrane enzyme prostaglandin H2 synthase-1. Adv. Prostagl. Throm. Leukotr. Res. 23, 99–103 (1995).

    CAS  Google Scholar 

  19. Luzzati, V. Treatment of statistical errors in the determination of crystal structures. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  20. Loll, P.J., Picot, D., Ekabo, O. & Garavito, R.M. Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the the prostaglandin H2 cyclooxygenase active site. Biochem. 35, 7330–7340 (1996).

    Article  CAS  Google Scholar 

  21. Loll, P.J., Picot, D. & Garavito, R.M. The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Struct. Biol. 2, 637–642 (1995).

    Article  CAS  Google Scholar 

  22. Callan, O.H., So, O. & Swinney, D. The kinetic factors that determine the affinity and selectivity for slow binding inhibition of human prostaglandin H synthase 1 and 2 by indomethicin and flurbiprofen. J. Biol.Chem. 271, 3548–3554 (1996).

    Article  CAS  Google Scholar 

  23. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  24. Gierse, J.K. et al. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J. Biol. Chem. 271, 15810–15814 (1996).

    Article  CAS  Google Scholar 

  25. Laneuville, O. et al. Fatty acid substrate specificites of human prostaglandin-enderoxide H synthase-1 and -2. J. Biol. Chem. 270, 19330–19336 (1995).

    Article  CAS  Google Scholar 

  26. Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 231, 232–235 (1971).

    Article  CAS  Google Scholar 

  27. DeWitt, D.L. et al. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem. 1990, 5192–5198 (1990).

    Google Scholar 

  28. Lecomte, M., Laneuville, O., Ji, C., DeWitt, D.L. & Smith, W.L. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J. Biol. Chem. 269, 13207–13215 (1994).

    CAS  PubMed  Google Scholar 

  29. Mancini, J.A., O'eill, G.P., Bayly, C. & Vickers, P.J. Mutation of serine-516 in human prostaglandin G/H synthase-2 to methionine and aspirin acetylation of this residue stimulates 15-R-HETE synthesis. FEBS Lett. 342, 33–37 (1994).

    Article  CAS  Google Scholar 

  30. McPherson, A. Preparation and analysis of protein crystals. (John Wiley & Sons, New York, 1982).

    Google Scholar 

  31. Otwinowski, Z. Oscillation data reductions program. in Proc. CCP4 Study Weekend, 29-30 Jan 1991. Data collection and processing (eds. L. Sawyer, N. Isaacs and S. Bailey) 55–62 SERC Daresbury Laboratory, UK, 1993).

    Google Scholar 

  32. The CCP4 suite: Programs for protein crystallography. Acta Cryst. D50, 760–763 (1994).

  33. Brünger, A.T. X-PLOR: Version 3.1 (Yale Press, New Haven, 1987).

    Google Scholar 

  34. Bernstein, F.C. et al. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  35. Brünger, A.T. Extension of molecular replacment:. A new search strategy based on Patterson correlation refinement. Acta Crystallogr. A45, 46–57 (1990).

    Article  Google Scholar 

  36. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  Google Scholar 

  37. Muller, K. et al. MOLOC: A molecular modeling program. Bull. Soc. Chim. Belg. 97, 655–667 (1988).

    Article  Google Scholar 

  38. Browner, M.F., Fauman, E.B. & Fletterick, R.J. Tracking conformational states in allosteric transitions of phosphorylase. Biochemistry 31, 11297–11304 (1992).

    Article  CAS  Google Scholar 

  39. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. App. Crystallgr. 24, 946–950 (1991).

    Article  Google Scholar 

  40. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. J. Molec. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luong, C., Miller, A., Barnett, J. et al. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Mol Biol 3, 927–933 (1996). https://doi.org/10.1038/nsb1196-927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1196-927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing