Abstract
Here we show that, as a consequence of binding the drug trifluoperazine, a major conformational movement occurs in Ca2+-calmodulin (CaM). The tertiary structure changes from an elongated dumb-bell, with exposed hydrophobic surfaces, to a compact globular form which can no longer interact with its target enzymes. It is likely that inactivation of Ca2+-CaM by trifluoperazine is due to this major tertiary-structural alteration in Ca2+-CaM, which is initiated and stabilized by drug binding. This conformational change is similar to that which occurs on the binding of Ca2+-CaM to target peptides. Two hydrophobic binding pockets, created by amino acid residues adjacent to Ca2+-coordinating residues, form the key recognition sites on Ca2+-CaM for both inhibitors and target enzymes.
Access options
Subscribe to Journal
Get full journal access for 1 year
$225.00
only $18.75 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Cheung, W.Y. Biological functions of calmodulin. Harvey Lect. 79, 173–216 (1985).
- 2
Bachs, O., Agell, N. & Carafoli, E. Calcium and calmodulin function in the nucleus. Biochim. biophys. Acta 1113, 259–270 (1992).
- 3
Lu, K.P. & Means, A.R. Regulation of the cell cycle by calcium and calmodulin. Endocrine Rev. 14, 40–58 (1993).
- 4
Rasmussen, C.D., Lu, K.P., Means, R.L. & Means, A.R. Calmodulin and cell cycle control. J. Physiol. 86, 83–88 (1992).
- 5
Hickie, R.A., Graham, M.J., Buckmeier, J.A. & Meyskens, F.L., Jr., Comparison of calmodulin gene expression in human neonatal melanocytes and metastatic melanoma cell lines. J. invest. Dermatol. 99, 764–773 (1992).
- 6
Nojima, H. Structural organization of multiple rat calmodulin genes. J molec. Biol. 208, 269–282 (1989).
- 7
Hickie, R.A., Wei, J.-W., Blyth, L.M. & Wong, D.Y.W. Cations and calmodulin in normal and neoplastic cell growth regulation. Can. J. Biochem. Cell. Biol. 61, 934–941 (1983).
- 8
Wei, J.-W. & Hickie, R.A. Increased content of calmodulin in Morris hepatoma 5123 t.c. (h). Biochem. biophys. Res. Comm. 100, 1562–1568 (1981).
- 9
Wei, J.-W., Morris, H.P. & Hickie, R.A. Positive correlation between calmodulin content and hepatoma growth rates. Cancer Res. 42, 2571–2574 (1982).
- 10
Ford, J.M. & Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42, 155–199 (1990).
- 11
Hait, W.N. & Lazo, J.S. Calmodulin: a potential target for cancer chemotherapeutic agents. J. clin. Oncol. 4, 994–1012 (1986).
- 12
Hickie, R.A. et al. Anticalmodulin agents as inhibitors of human tumor cell clonogenicity. in: Human Tumor Cloning, (eds S. E. Salmon & J. M. Trent). 409–424 (Grune and Stratton, New York, N. Y.; (1984).
- 13
Miller, R.L. et al. Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a Phase I/II trial. J. clin. Oncol. 6, 880–888 (1988).
- 14
Veigl, M.L., Klevit, R.E. & Sedwick, W.D. The uses and limitations of calmodulin antagonists. Pharmac. Ther. 44, 181–239 (1989).
- 15
Wei, J.-W., Hickie, R. A. & Klaassen, D. J. Inhibition of human breast cancer colony formation by anticalmodulin agents: trifluoperazine, W-7, and W-13. Cancer Chemother. Pharmacol. 11, 86–90 (1983).
- 16
Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of calmodulin refined at 2.2 Å resolution. J. molec. Biol. 203. 191–204 (1988).
- 17
Kretsinger, R.H. & Nockolds, C.E. Carp muscle calcium-binding protein II. Structure determination and general description. J. biol. Chem. 248, 3313–3326 (1973).
- 18
Gariépy, J. & Hodges, R. S. Primary sequence analysis and folding behavior of EF hands in relation to the mechanism of action of troponin C and calmodulin. FEBS Lett. 160, 1–6 (1983).
- 19
Bayley, P.M. & Martin, S.R. The α-helical content of calmodulin is increased by solution conditions favouring protein crystallisation. Biochim. biophys. Acta 1160, 16–21 (1992).
- 20
Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).
- 21
Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721 (1993).
- 22
Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).
- 23
Roufogalis, B.D., Minochehomjee, A.-E.-V.M., & Al-Jobore, A. Pharmacological antagonism of calmodulin. Can. J. Biochem. Cell Biol., 61, 927–933 (1982).
- 24
Weiss, B., Sellinger-Barnette, M., Winkler, J.D. & Schechter, L.E. Calmodulin antagonists: structure-activity relationships. in: Calmodulin Antagonists and Cellular Biology, (eds H. Hidaka & D. J. Hartshorne) 45–62 (Academic, Orlando, FL.;1985).
- 25
Levin, R.M. & Weiss, B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Molec. Pharmacol., 13, 690–697 (1977).
- 26
Massom, L., Lee, H. & Jarrett, H. W. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochemistry 29, 671–681 (1990).
- 27
Jackson, A.E. & Puett, D. Binding of trifluoperazine and fluorene-containing compounds to calmodulin and adducts. Biochem. Pharmacol. 35, 4395–4400 (1986).
- 28
Klevit, R.E., Levine, B.A. & Williams, R.J.P. A study of calmodulin and its interaction with trifluoperazine by high resolution 1H NMR spectroscopy. FEBS Letts 123, 25–29 (1981).
- 29
Dalgarno, D.C. et al. The nature of the trifluoperazine binding sites on calmodulin and troponin-C. Biochim. biophys. Acta 791, 164–172 (1984).
- 30
Krebs, J. & Carafoli, E. Influence of Ca2+ and trifluoperazine on the structure of calmodulin A 1H-nuclear magnetic resonance study. Eur. J. Biochem. 124, 619–627 (1982).
- 31
Gehrig, L.M.B., Delbaere, L.T.J. & Hickie, R.A. Preliminary X-ray dataforthe calmodulin/trifluoperazine complex. J. molec. Biol. 177, 559–561 (1984).
- 32
Kawasaki, H. et al. Crystallization of calcium-calmodulin-trifluoperazine complex and an attempt at crystallizing calcium-free calmodulin. J. Biochem. 97, 1815–1818 (1985).
- 33
Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations II Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965).
- 34
Marshak, D. R., Lukas, T. J. & Watterson, D. M. Drug-protein interactions: Binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 24, 144–150 (1985).
- 35
Reid, R. E. Drug interaction with calmodulin: the binding site. J. theor. Biol. 105, 63–76 (1983).
- 36
Gariépy, J. & Hodges, R. S. Localization of a trifluoperazine binding site on troponin C. Biochemistry 22, 1586–1594 (1983).
- 37
Massom, L.R., Lukas, T.J., Persechini, A., Kretsinger, R.H., Watterson, D.M. & Jarrett, H.W. Biochemistry 30, 663–667 (1991).
- 38
Faust, F.M., Slisz, M. & Jarrett, H.W. Calmodulin is labeled at lysine 148 by a chemically reactive phenothiazine. J. biol. Chem. 262, 1938–1941 (1987).
- 39
Strynadka, N.C.J. & James, M.N.G. Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C. Prots Struc. Funct. Genet. 3, 1–17 (1988).
- 40
French, S. & Wilson, K.S. On the treatment of negative intensity observations. Acta crystallogr. A34, 517–525 (1978).
- 41
Andersson, A., Forsén, S., Thulin, E. & Vogel, H.J. Cadmium-113 nuclear maghetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry 22, 2309–2313 (1983).
- 42
CCP4. The SERC (U. K.) Collaborative Computing Project No. 4: A suite of programs for protein crystallography, (Daresbury Laboratory, Warrington, U. K.; 1979).
- 43
Roussel, A. & Cambillau, C. TURBO FRODO.in Silicon Graphics Geometry Partner Directory 77–78, (Silicon Graphics, Mountain View, CA; (1989).
- 44
Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).
- 45
McDowell, J.J.H. Trifluoperazine hydrochloride, a phenothiazine derivative. Acta crystallogr. B36, 2178–2181 (1980).
- 46
Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).
Author information
Affiliations
Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 0W0
- Margaret Vandonselaar
- & Louis T. J. Delbaere
Department of Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 0W0
- Robert A. Hickie
Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 0W0
- Wilson Quail
Authors
Search for Margaret Vandonselaar in:
Search for Robert A. Hickie in:
Search for Wilson Quail in:
Search for Louis T. J. Delbaere in:
Rights and permissions
To obtain permission to re-use content from this article visit RightsLink.
About this article
Further reading
-
RNA-seq of life stages of the oomycete Phytophthora infestans reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development
BMC Genomics (2017)
-
Two-Dimensional NMR Lineshape Analysis
Scientific Reports (2016)
-
FhCaBP4: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains
Parasitology Research (2012)
-
Interaction of calmodulin with Sec61α limits Ca2+leakage from the endoplasmic reticulum
The EMBO Journal (2011)
-
Trifluoperazine: a rynodine receptor agonist
Pflügers Archiv - European Journal of Physiology (2009)