Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trifluoperazine-induced conformational change in Ca2+-calmodulin

Abstract

Here we show that, as a consequence of binding the drug trifluoperazine, a major conformational movement occurs in Ca2+-calmodulin (CaM). The tertiary structure changes from an elongated dumb-bell, with exposed hydrophobic surfaces, to a compact globular form which can no longer interact with its target enzymes. It is likely that inactivation of Ca2+-CaM by trifluoperazine is due to this major tertiary-structural alteration in Ca2+-CaM, which is initiated and stabilized by drug binding. This conformational change is similar to that which occurs on the binding of Ca2+-CaM to target peptides. Two hydrophobic binding pockets, created by amino acid residues adjacent to Ca2+-coordinating residues, form the key recognition sites on Ca2+-CaM for both inhibitors and target enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheung, W.Y. Biological functions of calmodulin. Harvey Lect. 79, 173–216 (1985).

    Google Scholar 

  2. Bachs, O., Agell, N. & Carafoli, E. Calcium and calmodulin function in the nucleus. Biochim. biophys. Acta 1113, 259–270 (1992).

    Article  CAS  Google Scholar 

  3. Lu, K.P. & Means, A.R. Regulation of the cell cycle by calcium and calmodulin. Endocrine Rev. 14, 40–58 (1993).

    Article  CAS  Google Scholar 

  4. Rasmussen, C.D., Lu, K.P., Means, R.L. & Means, A.R. Calmodulin and cell cycle control. J. Physiol. 86, 83–88 (1992).

    CAS  Google Scholar 

  5. Hickie, R.A., Graham, M.J., Buckmeier, J.A. & Meyskens, F.L., Jr., Comparison of calmodulin gene expression in human neonatal melanocytes and metastatic melanoma cell lines. J. invest. Dermatol. 99, 764–773 (1992).

    Article  CAS  Google Scholar 

  6. Nojima, H. Structural organization of multiple rat calmodulin genes. J molec. Biol. 208, 269–282 (1989).

    Article  CAS  Google Scholar 

  7. Hickie, R.A., Wei, J.-W., Blyth, L.M. & Wong, D.Y.W. Cations and calmodulin in normal and neoplastic cell growth regulation. Can. J. Biochem. Cell. Biol. 61, 934–941 (1983).

    Article  CAS  Google Scholar 

  8. Wei, J.-W. & Hickie, R.A. Increased content of calmodulin in Morris hepatoma 5123 t.c. (h). Biochem. biophys. Res. Comm. 100, 1562–1568 (1981).

    Article  CAS  Google Scholar 

  9. Wei, J.-W., Morris, H.P. & Hickie, R.A. Positive correlation between calmodulin content and hepatoma growth rates. Cancer Res. 42, 2571–2574 (1982).

    CAS  PubMed  Google Scholar 

  10. Ford, J.M. & Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42, 155–199 (1990).

    CAS  PubMed  Google Scholar 

  11. Hait, W.N. & Lazo, J.S. Calmodulin: a potential target for cancer chemotherapeutic agents. J. clin. Oncol. 4, 994–1012 (1986).

    Article  CAS  Google Scholar 

  12. Hickie, R.A. et al. Anticalmodulin agents as inhibitors of human tumor cell clonogenicity. in: Human Tumor Cloning, (eds S. E. Salmon & J. M. Trent). 409–424 (Grune and Stratton, New York, N. Y.; (1984).

    Google Scholar 

  13. Miller, R.L. et al. Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a Phase I/II trial. J. clin. Oncol. 6, 880–888 (1988).

    Article  CAS  Google Scholar 

  14. Veigl, M.L., Klevit, R.E. & Sedwick, W.D. The uses and limitations of calmodulin antagonists. Pharmac. Ther. 44, 181–239 (1989).

    Article  CAS  Google Scholar 

  15. Wei, J.-W., Hickie, R. A. & Klaassen, D. J. Inhibition of human breast cancer colony formation by anticalmodulin agents: trifluoperazine, W-7, and W-13. Cancer Chemother. Pharmacol. 11, 86–90 (1983).

    Article  CAS  Google Scholar 

  16. Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of calmodulin refined at 2.2 Å resolution. J. molec. Biol. 203. 191–204 (1988).

    Article  Google Scholar 

  17. Kretsinger, R.H. & Nockolds, C.E. Carp muscle calcium-binding protein II. Structure determination and general description. J. biol. Chem. 248, 3313–3326 (1973).

    CAS  Google Scholar 

  18. Gariépy, J. & Hodges, R. S. Primary sequence analysis and folding behavior of EF hands in relation to the mechanism of action of troponin C and calmodulin. FEBS Lett. 160, 1–6 (1983).

    Article  Google Scholar 

  19. Bayley, P.M. & Martin, S.R. The α-helical content of calmodulin is increased by solution conditions favouring protein crystallisation. Biochim. biophys. Acta 1160, 16–21 (1992).

    Article  CAS  Google Scholar 

  20. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, 1251–1255 (1992).

    Article  CAS  Google Scholar 

  21. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721 (1993).

    Article  CAS  Google Scholar 

  22. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256, 632–638 (1992).

    Article  CAS  Google Scholar 

  23. Roufogalis, B.D., Minochehomjee, A.-E.-V.M., & Al-Jobore, A. Pharmacological antagonism of calmodulin. Can. J. Biochem. Cell Biol., 61, 927–933 (1982).

    Article  Google Scholar 

  24. Weiss, B., Sellinger-Barnette, M., Winkler, J.D. & Schechter, L.E. Calmodulin antagonists: structure-activity relationships. in: Calmodulin Antagonists and Cellular Biology, (eds H. Hidaka & D. J. Hartshorne) 45–62 (Academic, Orlando, FL.;1985).

    Chapter  Google Scholar 

  25. Levin, R.M. & Weiss, B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Molec. Pharmacol., 13, 690–697 (1977).

    CAS  Google Scholar 

  26. Massom, L., Lee, H. & Jarrett, H. W. Trifluoperazine binding to porcine brain calmodulin and skeletal muscle troponin C. Biochemistry 29, 671–681 (1990).

    Article  CAS  Google Scholar 

  27. Jackson, A.E. & Puett, D. Binding of trifluoperazine and fluorene-containing compounds to calmodulin and adducts. Biochem. Pharmacol. 35, 4395–4400 (1986).

    Article  CAS  Google Scholar 

  28. Klevit, R.E., Levine, B.A. & Williams, R.J.P. A study of calmodulin and its interaction with trifluoperazine by high resolution 1H NMR spectroscopy. FEBS Letts 123, 25–29 (1981).

    Article  CAS  Google Scholar 

  29. Dalgarno, D.C. et al. The nature of the trifluoperazine binding sites on calmodulin and troponin-C. Biochim. biophys. Acta 791, 164–172 (1984).

    Article  CAS  Google Scholar 

  30. Krebs, J. & Carafoli, E. Influence of Ca2+ and trifluoperazine on the structure of calmodulin A 1H-nuclear magnetic resonance study. Eur. J. Biochem. 124, 619–627 (1982).

    Article  CAS  Google Scholar 

  31. Gehrig, L.M.B., Delbaere, L.T.J. & Hickie, R.A. Preliminary X-ray dataforthe calmodulin/trifluoperazine complex. J. molec. Biol. 177, 559–561 (1984).

    Article  CAS  Google Scholar 

  32. Kawasaki, H. et al. Crystallization of calcium-calmodulin-trifluoperazine complex and an attempt at crystallizing calcium-free calmodulin. J. Biochem. 97, 1815–1818 (1985).

    Article  CAS  Google Scholar 

  33. Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations II Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  34. Marshak, D. R., Lukas, T. J. & Watterson, D. M. Drug-protein interactions: Binding of chlorpromazine to calmodulin, calmodulin fragments, and related calcium binding proteins. Biochemistry 24, 144–150 (1985).

    Article  CAS  Google Scholar 

  35. Reid, R. E. Drug interaction with calmodulin: the binding site. J. theor. Biol. 105, 63–76 (1983).

    Article  CAS  Google Scholar 

  36. Gariépy, J. & Hodges, R. S. Localization of a trifluoperazine binding site on troponin C. Biochemistry 22, 1586–1594 (1983).

    Article  Google Scholar 

  37. Massom, L.R., Lukas, T.J., Persechini, A., Kretsinger, R.H., Watterson, D.M. & Jarrett, H.W. Biochemistry 30, 663–667 (1991).

    Article  CAS  Google Scholar 

  38. Faust, F.M., Slisz, M. & Jarrett, H.W. Calmodulin is labeled at lysine 148 by a chemically reactive phenothiazine. J. biol. Chem. 262, 1938–1941 (1987).

    CAS  PubMed  Google Scholar 

  39. Strynadka, N.C.J. & James, M.N.G. Two trifluoperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C. Prots Struc. Funct. Genet. 3, 1–17 (1988).

    Article  CAS  Google Scholar 

  40. French, S. & Wilson, K.S. On the treatment of negative intensity observations. Acta crystallogr. A34, 517–525 (1978).

    Article  CAS  Google Scholar 

  41. Andersson, A., Forsén, S., Thulin, E. & Vogel, H.J. Cadmium-113 nuclear maghetic resonance studies of proteolytic fragments of calmodulin: assignment of strong and weak cation binding sites. Biochemistry 22, 2309–2313 (1983).

    Article  CAS  Google Scholar 

  42. CCP4. The SERC (U. K.) Collaborative Computing Project No. 4: A suite of programs for protein crystallography, (Daresbury Laboratory, Warrington, U. K.; 1979).

  43. Roussel, A. & Cambillau, C. TURBO FRODO.in Silicon Graphics Geometry Partner Directory 77–78, (Silicon Graphics, Mountain View, CA; (1989).

    Google Scholar 

  44. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  45. McDowell, J.J.H. Trifluoperazine hydrochloride, a phenothiazine derivative. Acta crystallogr. B36, 2178–2181 (1980).

    Article  CAS  Google Scholar 

  46. Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandonselaar, M., Hickie, R., Quail, W. et al. Trifluoperazine-induced conformational change in Ca2+-calmodulin. Nat Struct Mol Biol 1, 795–801 (1994). https://doi.org/10.1038/nsb1194-795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1194-795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing