Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical elements in proteasome assembly

Abstract

Coexpression of both subunits of the Thermoplasma proteasome in Escherichia coli yields fully assembled and proteolytically active proteasomes. Post-translational processing of the β-subunit occurs in E. coli as it does in Thermoplasma. Coexpression of the α-subunit and the βΔpro-subunit, a mutant β-subunit lacking the propeptide, also yields fully assembled and active proteasomes. This indicates that the β-propeptide is not essential for the folding and assembly of Thermoplasma proteasomes. Separately expressed α-subunits assemble into heptameric rings indistinguishable from the terminal rings of a proteasome. Mutational analysis shows that the amino terminus, which is highly conserved in all proteasomal α-type proteins, is essential for assembly. In the absence of α-subunits the β-subunits are monomeric and post-translational processing of the β-propeptide does not occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldberg, A.L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka, K., Tamura, T., Yoshimura, T. & Ichihara, A. Proteasomes: protein and gene structure. The New Biologist 4, 173–187 (1992).

    CAS  PubMed  Google Scholar 

  3. Rivett, A.J. Proteasomes: multicatalytic proteinase complexes. Biochem. J. 291, 1–10 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. A. Rev. Biochem. 61, 761–807 (1992).

    Article  CAS  Google Scholar 

  5. Rechsteiner, M., Hoffman, L. & Dubiel, W. The multicatalytic and 26S proteases. J. biol. Chem. 268, 6065–6068 (1993).

    CAS  PubMed  Google Scholar 

  6. Goldberg, A.L. & Rock, K.L. Proteolysis, proteasomes and antigen presentation. Nature 357, 375–379 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Monaco, J.J. A molecular model of MHC class-I-restricted antigen processing. Immunol. Today 13, 173–179 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Trowsdale, J. Genomic structure and function in the MHC. Trends Genet. 9, 117–122 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Schauer, T. et al. Proteasomes from Dictyostelium discoideum: characterization of structure and function. J. struct. Biol. 111, 135–147 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Hegerl, R., Pfeifer, G., Puehler, G., Dahlmann, B. & Baumeister, W. The three-dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tilting. FEBS Letts. 283, 117–121 (1991).

    Article  CAS  Google Scholar 

  11. Puehler, G. et al. Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J. 11, 1607–1616 (1992).

    Article  CAS  Google Scholar 

  12. Kopp, F., Dahlmann, B. & Hendil, K.B. Evidence indicating that the human proteasome is a complex dimer. J. molec. Biol. 229, 14–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Dahlmann, B. et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FFBS Letts. 251, 125–131 (1989).

    Article  CAS  Google Scholar 

  14. Zwickl, P., Lottspeich, F., Dahlmann, B. & Baumeister, W. Cloning and sequencing of the gene encoding the large (α-) subunit of the proteasome from Thermoplasma acidophilum. FEBS Letts. 278, 217–221 (1991).

    Article  CAS  Google Scholar 

  15. Zwickl, P. et al. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31, 964–972 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Puehler, G., Pitzer, F., Zwickl, P. & Baumeister, W. Proteasomes: multisubunit proteinases common to Thermoplasma and Eukaryotes. System. appl. Microbiol. 16, 734–741 (1994).

    Article  CAS  Google Scholar 

  17. Grziwa, A., Baumeister, W., Dahlmann, B. & Kopp, F. Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopy. FEBS Letts 290, 186–190 (1991).

    Article  CAS  Google Scholar 

  18. Zwickl, P., Lottspeich, F. & Baumeister, W. Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coli. FEBS Letts 312, 157–160 (1992).

    Article  CAS  Google Scholar 

  19. Frueh, K. et al. Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits. J. biol. Chem. 267, 22131–22140 (1992).

    CAS  Google Scholar 

  20. Glynne, R. et al. The major histocompatibility complex-encoded proteasome component LMP7: alternative first axons and posttranslational processing. Eur. J. Immunol. 23, 860–866 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Frentzel, S. et al. The major-histocompatibility-complex-encoded β-type proteasome subunits LMP2 and LMP7. Eur. J. Biochem. 216, 119–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Frentzel, S., Pesold-Hurt, B., Seelig, A. & Kloetzel, P.-M. 20S proteasomes are assembled via distinct precursor complexes. J. molec. Biol. 236, 975–981 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez, C.K. & Monaco, J.J. Post-translational processing of a major histocompatibility complex-encoded proteasome subunit, LMP-2. Molec. Immunol. 30, 1177–1183 (1993).

    Article  CAS  Google Scholar 

  24. Maurizi, M.R. Proteases and protein degradation in Escherichia coli. Experientia 48, 178–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Gottesman, S. & Maurizi, M.R. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56, 592–621 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baker, D., Shiau, A.K. & Agard, D.A. The role of pro regions in protein folding. Curr. Opin. Cell Biol. 5, 966–970 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Shinde, U. & Inouye, M. Intramolecular chaperones and protein folding. Trends biochem. Sci. 18, 442–446 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Seelig, A., Multhaup, G., Pesold-Hurt, B., Beyreuther, K. & Kloetzel, P.-M. Drosophila proteasomes Dm25 subunit substitutes the mouse MC3 subunit in hybrid proteasomes. J. biol. Chem. 268, 25561–25567 (1993).

    CAS  PubMed  Google Scholar 

  29. Zwickl, P. et al. Electron microscopy and image analysis reveal common principles of organization in two large protein complexes: GroEL-type proteins and proteasomes. J. struct. Biol. 103, 197–203 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Horovitz, A., Bochkareva, E.S. & Girshovich, A.S. The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly. J. biol. Chem. 268, 9957–9959 (1993).

    CAS  PubMed  Google Scholar 

  31. Horovitz, A., Bochkareva, E.S., Kovalenko, O. & Girshovich, A.S. Mutation Ala2Ser destabilizes intersubunit interactions in the molecular chaperone GroEL. J. molec. Biol. 231, 58–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Taguchi, H., Makino, Y. & Yoshida, M. Monomeric chaperonin-60 and its 50-kda fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding. J. biol. Chem. 269, 8529–8534 (1994).

    CAS  PubMed  Google Scholar 

  33. Thornton, J.M. & Sibanda, B.L. Amino and carboxy-terminal regions in globular proteins. J. molec. Biol. 167, 443–460 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Grziwa, A., Maack, S., Puehler, G., Wiegand, G., Baumeister, W. & Jaenicke, R. Dissociation and reconstitution of the Thermoplasma proteasome. Eur. J. Biochem. 223, 1061–1067 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Akiyama, K. et al. cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science 265, 1231–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Belich, M.P., Glynne, R.J., Senger, G., Sheer, D. & Trowsdale, J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr. Biol. 4, 769–776 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Clackson, T., Guessow, D. & Jones, P.T. General application of PCR to gene cloning and manipulation. in PCR, A practical approach (eds McPherson, M.J. et al.) 187–214 (Oxford University Press, Oxford, (1991).

    Google Scholar 

  38. Lundberg, K.S. et al. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Tabor, S. & Richardson, C.C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. natn. Acad. Sci. U.S.A. 82, 1074–1078 (1985).

    Article  CAS  Google Scholar 

  40. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwickl, P., Kleinz, J. & Baumeister, W. Critical elements in proteasome assembly. Nat Struct Mol Biol 1, 765–770 (1994). https://doi.org/10.1038/nsb1194-765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1194-765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing