Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Dawdling polymerases allow introns time to splice

Two recent reports show that the rate of transcription elongation affects splice site selection and exon skipping and, thereby, the nature of the information expressed from a gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splice site selection is affected by the rate of RNA polymerase II (Pol II) and the abundance of splicing factors.

References

  1. de la Mata, M. et al. Mol. Cell 12, 525–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Howe, K.J., Kane, C.M. & Ares, M. Jr. RNA 9, 993–1006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mistelli, T. & Spector, D.L. Mol. Cell 3, 697–707 (1999).

    Article  Google Scholar 

  4. Beyer, A. & Osheim, Y. Genes Dev. 2, 754–765 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Burge, C.B. et al. Splicing of precursors to mRNAs by the spliceosomes. In The RNA World 2nd edn, 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999).

    Google Scholar 

  6. Springola, M., Grate, L., Haussler, D. & Ares, M.A. RNA 5, 221–234 (1999).

    Article  Google Scholar 

  7. Lander, E.S. et al. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Tennyson, C.N., Klamut, H.J. & Worton, R.G. Nat. Genet. 9, 184–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Black, D.L. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, C.W.J. & Valcárcel, J. Trends Biochem. Sci. 25, 381–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Y., Chafin, D., Prices, D.H. & Greenleaf, A.L. J. Biol. Chem. 271, 5993–5999 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Gerber, H.P. et al. Nature 374, 660–662 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Enriquez-Harris, P., Levitt, N., Briggs, D. & Proudfoot, N.J. EMBO J. 10, 1833–1842 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aranda, A. & Proudfoot, N. Mol. Cell. Biol. 19, 1251–1261 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uptain, S.M., Kane, C.M. & Chamberlin, M.J. Annu. Rev. Biochem. 66, 117–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Ashfield, R., Enriquez-Harris, P. & Proudfoot, N.J. EMBO J. 10, 4197–4207 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. & Smith, C.W.J. Nucleic Acids Res. 26, 5568–5572 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peterson, M.L., Bertolino, S. & Davis, F. Mol. Cell. Biol. 22, 5606–5615 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takagaki, Y., Seipelt, R.L., Peterson, M.L. & Manley, J.L. Cell 87, 941–952 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Takagaki, Y. & Manley, J.L. Mol. Cell 2, 761–771 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Cramer, P., Peace, C.G., Baralle, F.E. & Kornblihtt, A.R. Proc. Natl. Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cramer, P. et al. Mol. Cell 4, 251–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kadener, S. et al. EMBO J. 20, 5759–5768 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kadener, S., Fededa, J.P., Rosbash, M. & Kornblihtt, A.R. Proc. Natl. Acad. Sci. USA 99, 8185–8190 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monsalve, M. et al. Mol. Cell 6, 307–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nogués, G., Kadener, S., Cramer, P., Bentley, D. & Kornblihtt, A.R. J. Biol. Chem. 277, 43110–43114 (2002).

    Article  PubMed  Google Scholar 

  27. Pagani, F., Stuani, C., Kornblihtt, A.R. & Baralle, F.E. J. Biol. Chem. 278, 1511–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Auboeuf, D., Hönig, A., Berget, S.M. & O'Malley, B.W. Science 298, 416–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Proudfoot, N.J., Furger, A. & Dye, M.J. Cell 108, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hampsey, M. & Reinberg, D. Cell 113, 429–432 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proudfoot, N. Dawdling polymerases allow introns time to splice. Nat Struct Mol Biol 10, 876–878 (2003). https://doi.org/10.1038/nsb1103-876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1103-876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing