Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel, specific interaction involving the Csk SH3 domain and its natural ligand

Abstract

C-terminal Src kinase (Csk) takes part in a highly specific, high affinity interaction via its Src homology 3 (SH3) domain with the proline-enriched tyrosine phosphatase PEP in hematopoietic cells. The solution structure of the Csk-SH3 domain in complex with a 25-residue peptide from the Pro/Glu/Ser/Thr-rich (PEST) domain of PEP reveals the basis for this specific peptide recognition motif involving an SH3 domain. Three residues, Ala 40, Thr 42 and Lys 43, in the SH3 domain of Csk specifically recognize two hydrophobic residues, Ile 625 and Val 626, in the proline-rich sequence of the PEST domain of PEP. These two residues are C-terminal to the conventional proline-rich SH3 domain recognition sequence of PEP. This interaction is required in addition to the classic polyproline helix (PPII) recognition by the Csk-SH3 domain for the association between Csk and PEP in vivo. NMR relaxation analysis suggests that Csk-SH3 has different dynamic properties in the various subsites important for peptide recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment for several SH3 domains involved with Pro-rich peptide binding and Pro-rich peptides from tyrosine phosphatases, PEP and PTP-PEST.
Figure 2: Solution structure of the Csk-SH3–PEP-3BP1 complex.
Figure 3: Detailed view of the two distinct surfaces on Csk-SH3 involved in peptide recognition.
Figure 4: Backbone dynamics of the Csk-SH3–PEP-3BP1 complex determined by 15N relaxation measurements.
Figure 5: Comparison of the peptide recognition surfaces in the HIV-1 Nef–Fyn-SH3 (R96I)33 mutant and Csk-SH3–PEP interactions.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Erpel, T. & Courtneidge, S.A. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr. Opin. Cell Biol. 7, 176–182 (1995).

    Article  CAS  Google Scholar 

  2. Superti-Furga, G. & Courtneidge, S.A. Structure-function relationships in Src family and related protein tyrosine kinases. Bioessays 17, 321–330 (1995).

    Article  CAS  Google Scholar 

  3. Sabe, H. et al. Molecular cloning and expression of chicken C-terminal Src kinase: lack of stable association with c-Src protein. Proc. Natl. Acad. Sci. USA 89, 2190–2194 (1992).

    Article  CAS  Google Scholar 

  4. Imamoto, A. & Soriano, P. Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117–1124 (1993).

    Article  CAS  Google Scholar 

  5. Chow, L.M., Fournel, M., Davidson, D. & Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365, 156–160 (1993).

    Article  CAS  Google Scholar 

  6. Thomas, S.M., Soriano, P. & Imamoto, A. Specific and redundant roles of Src and Fyn in organizing the cytoskeleton. Nature 376, 267–271 (1995).

    Article  CAS  Google Scholar 

  7. Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    Article  CAS  Google Scholar 

  8. Cloutier, J.F. & Veillette, A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 15, 4909–4918 (1996).

    Article  CAS  Google Scholar 

  9. Vang, T. et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J. Exp. Med. 193, 497–508 (2001).

    Article  CAS  Google Scholar 

  10. Gjorloff-Wingren, A., Saxena, M., Williams, S., Hammi, D. & Mustelin, T. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur. J. Immunol. 29, 3845–3854 (1999).

    Article  CAS  Google Scholar 

  11. Cloutier, J.F. & Veillette, A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 189, 111–121 (1999).

    Article  CAS  Google Scholar 

  12. Gregorieff, A., Cloutier, J.F. & Veillette, A. Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J. Biol. Chem. 273, 13217–13222 (1998).

    Article  CAS  Google Scholar 

  13. Borchert, T.V., Mathieu, M., Zeelen, J.P., Courtneidge, S.A. & Wierenga, R.K. The crystal structure of human CskSH3: structural diversity near the RT-Src and n-Src loop. FEBS Lett. 341, 79–85 (1994).

    Article  CAS  Google Scholar 

  14. Cowburn, D. & Kuriyan, J. In Signal transduction (eds Heldin, C.-H. & Purton, M.) 127–142 (Chapman & Hall, London; 1996).

    Google Scholar 

  15. Mayer, B.J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001).

    CAS  PubMed  Google Scholar 

  16. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  17. Yu, H. et al. Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 258, 1665–1668 (1992).

    Article  CAS  Google Scholar 

  18. Lim, W.A., Richards, F.M. & Fox, R.O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  CAS  Google Scholar 

  19. Lim, W.A. & Richards, F.M. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nature Struct. Biol. 1, 221–225 (1994).

    Article  CAS  Google Scholar 

  20. Weng, Z. et al. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Mol. Cell. Biol. 15, 5627–5634 (1995).

    Article  CAS  Google Scholar 

  21. Davidson, D., Cloutier, J.F., Gregorieff, A. & Veillette, A. Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J. Biol. Chem. 272, 23455–23462 (1997).

    Article  CAS  Google Scholar 

  22. Davidson, D., Chow, L.M. & Veillette, A. Chk, a Csk family tyrosine protein kinase, exhibits Csk-like activity in fibroblasts, but not in an antigen-specific T-cell line. J. Biol. Chem. 272, 1355–1362 (1997).

    Article  CAS  Google Scholar 

  23. Grgurevich, S. et al. The Csk-like proteins Lsk, Hyl, and Matk represent the same Csk homologous kinase (Chk) and are regulated by stem cell factor in the megakaryoblastic cell line MO7e. Growth Factors 14, 103–115 (1997).

    Article  CAS  Google Scholar 

  24. Kay, L.E. Protein dynamics from NMR. Nature Struct. Biol. 5, 513–517 (1998).

    Article  CAS  Google Scholar 

  25. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. J. Am. Chem. Soc. 104, 4559–4570 (1982).

    Article  CAS  Google Scholar 

  26. Ghose, R., Fushman, D. & Cowburn, D. Determination of the rotational diffusion tensor of macromolecules in solution from NMR relaxation data with a combination of exact and approximate methods - application to the determination of interdomain orientation in multidomain proteins. J. Magn. Reson. 149, 204–217 (2001).

    Article  CAS  Google Scholar 

  27. Garcia de la Torre, J., Huertas, M.L. & Carrasco, B. HYDRONMR: prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J. Magn. Reson. 147, 138–146 (2000).

    Article  CAS  Google Scholar 

  28. Fushman, D., Cahill, S. & Cowburn, D. The main chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194 (1997).

    Article  CAS  Google Scholar 

  29. Lee, A.L., Kinnear, S.A. & Wand, J. Redistribution and loss of side chain entropy upon complex formation of a calmodulin-peptide complex. Nature Struct. Biol. 7, 72–77 (2000).

    Article  CAS  Google Scholar 

  30. Zidek, L., Novotny, M.V. & Stone, M. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Struct. Biol. 6, 1118–1121 (1999).

    Article  CAS  Google Scholar 

  31. Loria, J.P., Rance, M. & Palmer, A.G.P.I. A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332 (1999).

    Article  CAS  Google Scholar 

  32. Vaughn, J.L., Feher, V.A., Bracken, C. & Cavanagh, J. The DNA-binding domain in the Bacillus subtilis transition-state regulator AbrB employs significant motion for promiscuous DNA recognition. J. Mol. Biol. 305, 429–439 (2001).

    Article  CAS  Google Scholar 

  33. Lee, C.H. et al. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015 (1995).

    Article  CAS  Google Scholar 

  34. Collette, Y. et al. HIV-2 and SIV Nef proteins target different Src family SH3 domains than does HIV-1 Nef because of a triple amino acid substitution. J. Biol. Chem. 275, 4171–4176 (2000).

    Article  CAS  Google Scholar 

  35. Lee, C.-H., Saksela, K., Mirza, U.A., Chait, B.T. & Kuriyan, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942 (1996).

    Article  CAS  Google Scholar 

  36. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  37. Staley, J.P. & Kim, P.S. Formation of a native-like subdomain in a partially folded intermediate of bovine pancreatic tripsin inhibitor. Protein Sci. 3, 1822–1832 (1994).

    Article  CAS  Google Scholar 

  38. Shu, W., Ji, H. & Lu, M. Trimerization specificity in HIV-1 gp41: analysis with a GCN4 leucine zipper model. Biochemistry 38, 5378–5385 (1999).

    Article  CAS  Google Scholar 

  39. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  40. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  41. Cavanagh, J., Fairbrother, W.J., III, Palmer, A.J. & Skelton, N.J. Protein NMR spectroscopy (Academic Press, San Diego; 1996).

    Google Scholar 

  42. Logan, T.M., Olejniczak, E.T., Xu, R.X. & Fesik, S.W. A general method for assigning NMR spectra of denatured proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J. Biomol. NMR 3, 225–231 (1993).

    Article  CAS  Google Scholar 

  43. Guentert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  44. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  45. Jones, J.A. Optimal sampling strategies for the measurement of relaxation times in proteins. J. Magn. Reson. 126, 283–286 (1997).

    Article  CAS  Google Scholar 

  46. Boggs, P.T., Byrd, R.H., Rogers, T.E. & Schnabel, R.B. User's reference guide for ODRPACK 2.01-software for weighted orthogonal distance regression; NIST IR4834 (U.S. Government Printing Office,Washington, DC; 1992).

    Book  Google Scholar 

  47. Clore, G.M. et al. Deviations from the simple two-parameter model-free approach to the interpretation of 15N nuclear magnetic relaxation of proteins. J. Am. Chem. Soc 112, 4989–4936 (1990).

    Article  CAS  Google Scholar 

  48. Koradi, R., Billeter, M. & Wuthrich, K. A program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  49. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  50. Laskowski, R.A., Rullmann, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.G. would like to thank D. Fushman for useful discussions and for providing the DYNAMICS package and P. Loria for providing the relaxation compensated CPMG pulse sequence. The authors thank P.A. Cole for useful discussions. This work has been supported by a grant from the National Institutes of Health and a fellowship from the National Cancer Institute to A.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cowburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghose, R., Shekhtman, A., Goger, M. et al. A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Mol Biol 8, 998–1004 (2001). https://doi.org/10.1038/nsb1101-998

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing