Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase

Abstract

Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine α-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzymne that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 Å apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction catalyzed by bifunctional PAM.
Figure 2: A representation of the PHMcc fold.
Figure 3: Schematic diagram of crystal activity experiment.
Figure 4: Reduced and oxidized PHMcc active sites.
Figure 5: Stereo view of the electron density connecting Gln 170 and substrate in ox-PHMcc–sub.
Figure 6: Superposition of reduced and oxidized PHMcc active sites.
Figure 7: Calculated electron transfer pathways.
Figure 8: Mechanism proposed for PHM involving electron transfer through the substrate.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Eipper, B.A., Stoffers, D.A. & Mains, R.E. The biosynthesis of neuropeptides: peptide alpha-amidation. Annu. Rev. Neurosci. 15, 57–85 (1992).

    Article  CAS  Google Scholar 

  2. Eipper, B.A., Milgram, S.L., Husten, E.J., Yun, H-Y. & Mains, R.E. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci. 2, 489–497 (1993).

    Article  CAS  Google Scholar 

  3. Bradbury, A.F. & Smyth, D.G. Peptide amidation. TIBS 16, 112–115 (1991).

    CAS  PubMed  Google Scholar 

  4. Merkler, D.J. C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb. Technol. 16, 450–456 (1994).

    Article  CAS  Google Scholar 

  5. Katopodis, A.G. & May, S.W. Novel substrates and inhibitors of peptidylglycine alpha-amidating monooxygenase. Biochemistry 29, 4541–4548 (1990).

    Article  CAS  Google Scholar 

  6. Suzuki, K., Ohta, M., Okamoto, M. & Nishikawa, Y. Functional expression and characterization of a Xenopus laevis peptidylglycine alpha-amidating monooxygenase, AE-II, in insect-cell culture. Eur. J. Biochem. 213, 93–98 (1993).

    Article  CAS  Google Scholar 

  7. Eipper, B.A., Quon, A.S.W., Mains, R.E., Boswell, J.S. & Blackburn, N.J. The catalytic core of peptidylglycine alpha-hydroxylating monooxygenase: investigation by site-directed mutagenesis, Cu x-ray absorption spectroscopy, and electron paramagnetic resonance. Biochemistry 34, 2857–2865 (1995).

    Article  CAS  Google Scholar 

  8. Kulathila, R. et al. Bifunctional peptidylglycine alpha-amidating enzyme requires two copper atoms for maximum activity. Arch. Biochem. Biophys. 311, 191–195 (1994).

    Article  CAS  Google Scholar 

  9. Freeman J.C., Villafranca, J.J. & Merkler, D.J. Redox cycling of enzyme-bound copper during peptide amidation. J. Am. Chem. Soc. 115, 4923–4924 (1993).

    Article  CAS  Google Scholar 

  10. Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E. & Amzel, L.M. Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase. Science 278, 1300–1305 (1997).

    Article  CAS  Google Scholar 

  11. Gray, H.B. & Winkler, J.R. Electron transfer in proteins. Annu. Rev. Biochem. 65, 537–561 (1996).

    Article  CAS  Google Scholar 

  12. Moser, C.C., Page, C.C., Chen, X. & Dutton, P.L. Electron tunneling in proteins: role of the intervening medium. J. Biol. Inorg. Chem. 2, 393–398 (1997).

    Article  CAS  Google Scholar 

  13. Beratan D. & Skourtis S. Electron transfer mechanisms. Curr. Opin. Chem. Biol. 2, 235–243 (1998).

    Article  CAS  Google Scholar 

  14. Westbrook, E.M. & Sigler, P.B. Enzymatic function in crystals of delta 5-3-ketosteroid isomerase. Catalytic activity and binding of competitive inhibitors. J. Biol. Chem. 259, 9090–9095 (1984).

    CAS  PubMed  Google Scholar 

  15. Merkler, D.J., Kulathila, R., Tamburini, P.P. & Young, S.D. Selective inactivation of the hydroxylase activity of bifunctional rat peptidylglycine alpha-amidating enzyme. Arch. Biochem. Biophys. 294, 594–602 (1992).

    Article  CAS  Google Scholar 

  16. Champloy, F. et al. Studies of copper complexes displaying N3S coordination as models for CuB center of dopamine beta-hydrolase and peptidylglycine alpha-hydroxylating monooxygenase. Inorg. Chem. 37, 3910–3918 (1998).

    Article  CAS  Google Scholar 

  17. Ramer, S.E., Cheng, H., Palcic, M.M. & Vederas, J.C. Formation of peptide amides by peptidylglycine alpha-amidating monooxygenase: a new assay and stereochemistry of hydrogen loss. J. Am. Chem. Soc. 110, 8526–8532 (1988).

    Article  CAS  Google Scholar 

  18. Boswell, J.S., Reedy, B.J., Kulathila, R., Merkler, D. & Blackburn, N.J. Structural investigations on the coordination environment of the active-site copper centers of recombinant bifunctional peptidylglycine alpha-amidating enzyme. Biochemistry 35, 12241–12250 (1996).

    Article  CAS  Google Scholar 

  19. Casella, L. & Gullotti, M. In Bioinorganic chemistry of copper. (eds Karlin, K.D. & Tyeklar, Z.) 292–305 (Chapman and Hall, New York; 1993).

    Book  Google Scholar 

  20. Casella, L., Gullotti, M., Bartosek, M., Pallanza, G. & Laurenti, E. Model monooxygenase reactivity by binuclear two-coordinate copper(I) complexes extends to new ligand systems containing nitrogen and sulphur donors. J. Chem. Soc., Chem. Commun. 1235–1237 (1991).

  21. Mehta, N.M. et al. Purification of a peptidylglycine alpha-amidating enzyme from transplantable rat medullary thyroid carcinomas. Arch. Biochem. Biophys. 261, 44–54 (1988).

    Article  CAS  Google Scholar 

  22. Tamburini, P.P., Young, S.D., Jones, B.N., Palmesino, R.A. & Consalvo, A.P. Peptide substrate specificity of the alpha-amidating enzyme isolated from rat medullary thyroid CA-77 cells. Int. J. Pept. Protein Res. 35, 153–156 (1990).

    Article  CAS  Google Scholar 

  23. Guss, J.M., Harrowell, P.R., Murata, M., Norris, V.A. & Freeman, H.C. Crystal structure analysis of reduced (CuI) poplar plastocyanin at six pH values. J. Mol. Biol. 192, 361–387 (1986).

    Article  CAS  Google Scholar 

  24. Beratan, D.N., Betts, J.N. & Onuchic J.N. Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 252, 1285 (1991).

    Article  CAS  Google Scholar 

  25. Beratan, D. & Skourtis, S. Electron transfer mechanisms. Curr. Opin. Chem. Biol. 2, 235 (1998).

    Article  CAS  Google Scholar 

  26. Qi, P.X., Urbauer, J.L., Fuentes, E.J., Leopold, M.F. & Wand, A.J. Structural water in oxidized and reduced horse heart cytochrome c. Nature Struct. Biol. 1, 378–382 (1994).

    Article  CAS  Google Scholar 

  27. Sharp, K.A. Calculation of electron transfer reorganization energies using the finite difference Poisson–Boltzmann model. Biophys. J. 74, 1241–1250 (1998).

    Article  CAS  Google Scholar 

  28. Kumar, K., Lin, Z., Waldeck, D.H. & Zimmt, M.B. Electronic coupling in C-clamp-shaped molecules in solvent-mediated superexchange pathways. J. Am. Chem. Soc. 118, 243–244 (1996).

    Article  CAS  Google Scholar 

  29. Bradbury, A.F., Mistry, J., Roos, B.A. & Smyth, D.G. 4-phenyl-3-butenoic acid, an in vivo inhibitor of peptidylglycine hydroxylase (peptide amidating enzyme). Eur. J. Biochem. 189, 363–368 (1990).

    Article  CAS  Google Scholar 

  30. Rhodes, C.H. & Honsinger, C. Structure-activity relationships among inhibitors of peptidylglycine amidating monooxygenase. Ann. N.Y. Acad. Sci. 689, 663–666 (1993).

    Article  CAS  Google Scholar 

  31. Casara, P., Ganzhorn, A., Philippo, C., Chanal, M-C. & Danzin, C. Unsaturated thioacetic acids as novel mechanism-based inhibitors of peptidylglycine alpha-hydroxylating monooxygenase. Bioorg. Med. Chem. Lett. 6, 393–396 (1996).

    Article  CAS  Google Scholar 

  32. Merkler, D.J., Merkler, K.A., Stern, W. & Fleming, F.F. Fatty acid amide biosynthesis: a possible new role for peptidylglycine alpha-amidating enzyme and acyl-coenzyme A:glycine N-acyltransferase. Arch. Biochem. Biophys. 330, 430–434 (1996).

    Article  CAS  Google Scholar 

  33. Bolkenius, F.N., Ganzhorn, A.J., Chanal, M-C. & Danzin, C. Selective mechanism-based inactivation of peptidylglycine alpha-hydroxylating monooxygenase in serum and heart atrium vs. brain. Biochem. Pharmacol. 53, 1695–1702 (1997).

    Article  CAS  Google Scholar 

  34. Bradbury, A.F. & Smyth, D.G. In Biogenetics of neurohormonal peptides. (eds Hakanson, R. & Thorell, J.) 171–186 (New York; Academic; 1985).

    Google Scholar 

  35. Murthy A.S., Keutmann H.T. & Eipper B.A. Further characterization of peptidylglycine alpha-amidating monooxygenase from bovine neurointermediate pituitary. Mol. Endocrinol. 1, 290–299 (1987).

    Article  CAS  Google Scholar 

  36. Karlin, K.D., Kaderli, S. & Zuberbuhler, A.D. Kinetic and thermodynamics of copper(I)/dioxygen interaction. Acc. Chem. Res. 30, 139–147 (1997).

    Article  CAS  Google Scholar 

  37. Ahn, N. & Klinman, J.P. Mechanism of modulation of dopamine beta-monooxygenase by pH and fumarate as deduced from initial rate and primary deuterium isotope effect studies. Biochemistry 22, 3096–3106 (1983).

    Article  CAS  Google Scholar 

  38. Miller, S.M. & Klinman, J.P. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism. Biochemistry 24, 2114–2127 (1985).

    Article  CAS  Google Scholar 

  39. Tian, G., Berry, J.A. & Klinman, J.P. Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases. Biochemistry 33, 226–234 (1994).

    Article  CAS  Google Scholar 

  40. Klinman, J.P. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem. Rev. 96, 2541–2561 (1996).

    Article  CAS  Google Scholar 

  41. Eipper, B.A. & Mains, R.E. Peptide alpha-amidation. Annu. Rev. Physiol. 50, 333–344 (1988).

    Article  CAS  Google Scholar 

  42. Stewart, L.C. & Klinman, J.P. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Annu. Rev. Biochem. 57, 551–592 (1988).

    Article  CAS  Google Scholar 

  43. Southan, C. & Kruse, L.I. Sequence similarity between dopamine beta-hydroxylase and peptide alpha-amidating enzyme: evidence for a conserved catalytic domain. FEBS Lett. 255, 116–120 (1989).

    Article  CAS  Google Scholar 

  44. Francisco, W.A., Merkler, D.J., Blackburn, N.J. & Klinman, J.P. Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction. Biochemistry 37, 8244–8252 (1998).

    Article  CAS  Google Scholar 

  45. Bernhard, P. & Anson, F.C. Hydrogen abstraction from amine complexes of Iron(II), Cobalt(I), and Ruthenium(II) by superoxide. Influence of driving force on rate. Inorg. Chem. 27, 4574–4577 (1988).

    Article  CAS  Google Scholar 

  46. Vasquez-Vivar, J. et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. USA 95, 9220–9225 (1998).

    Article  CAS  Google Scholar 

  47. Poulos, T.L. & Raag, R. Cytochrome P450cam: crystallography, oxygen activation, and electron transfer. FASEB J. 6, 674–679 (1992).

    Article  CAS  Google Scholar 

  48. Daff, S.N. et al. Redox control of the catalytic cycle of flavocytochrome P450 BM3. Biochemistry 36, 13816–13823 (1997).

    Article  CAS  Google Scholar 

  49. Lanzilotta, W.N., Parker, V.D. & Seefeldt, L.C. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Biochemistry 37, 399–407 (1998).

    Article  CAS  Google Scholar 

  50. Kolhekar, A.S., Keutmann, H.T., Mains, R.E., Quon, A.S.W. & Eipper, B.A. Peptidylglycine alpha-hydroxylating monooxygenase: active site residues, disulfide linkages, and a two-domain model of the catalytic core. Biochemistry 36, 10901–10909 (1997).

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  52. Brunger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR (Yale Univ. Press, New Haven; 1992).

    Google Scholar 

  53. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  54. Zabriskie, T.M., Cheng, H. & Vederas, J.C. Incorporation of oxygen into the hydroxyglycyl intermediate during formation of C-terminal peptide amides by peptidylglycine alpha-amidating monooxygenase (PAM). J. Chem. Soc., Chem. Commun., 571–572 (1991).

  55. Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  56. Reedy, B.J. & Blackburn, N.J. Preparation and characterization of half-apo dopamine beta-hydroxylase by selective removal of CuA. Identification of a sulfur ligand at the dioxygen binding site by EXAFS and FITR spectroscopy. J. Am. Chem. Soc. 116, 1924–1931 (1994).

    Article  CAS  Google Scholar 

  57. Harata, M., Jitsukawa, K., Masuda, H. & Einaga, H. A structurally characterized mononuclear copper(II)-superoxo complex. J. Am. Chem. Soc. 116, 10817–10818 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Ogata and the staff at beamline X4A for assistance during data collection at the NSLS. Beamline X4A at the NSLS, a DOE facility, is supported by the Howard Hughes Medical Institute. We thank J. Berg, J. Wehrle and N. Carrasco for critical review of this manuscript. This work was supported by grants from the NIDDK to B.A.E and the NIGMS to L.M.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mario Amzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prigge, S., Kolhekar, A., Eipper, B. et al. Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase. Nat Struct Mol Biol 6, 976–983 (1999). https://doi.org/10.1038/13351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing