Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two β-propeller domains

Abstract

The ubiquitous use of heme in animals poses severe biological and chemical challenges. Free heme is toxic to cells and is a potential source of iron for pathogens. For protection, especially in conditions of trauma, inflammation and hemolysis, and to maintain iron homeostasis, a high-affinity binding protein, hemopexin, is required. Hemopexin binds heme with the highest affinity of any known protein, but releases it into cells via specific receptors. The crystal structure of the heme–hemopexin complex reveals a novel heme binding site, formed between two similar four-bladed β-propeller domains and bounded by the interdomain linker. The ligand is bound to two histidine residues in a pocket dominated by aromatic and basic groups. Further stabilization is achieved by the association of the two β-propeller domains, which form an extensive polar interface that includes a cushion of ordered water molecules. We propose mechanisms by which these structural features provide the dual function of heme binding and release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the heme-hemopexin complex.
Figure 2: Stereo view of electron density at the heme binding site.
Figure 3: Environment around the heme.
Figure 4: Interface interactions between the two b-propeller domains, showing the 'cushion' of 14 ordered water molecules (dark blue) at the center of the interface, plus specific salt bridging interactions Arg 79-Asp 263 and Glu 130-Arg 257 (side chains in magenta).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lee, B.C. Mol. Microbiol. 18, 383–390 (1995).

    Article  CAS  Google Scholar 

  2. Berlett, B.S. & Stadtman, E.R. J. Biol. Chem. 272 , 20313–20316 (1997).

    Article  CAS  Google Scholar 

  3. Smith, M.A. et al. J. Neurochem. 70, 2212– 2215 (1998).

    Article  CAS  Google Scholar 

  4. Smith, A. In Biosynthesis of heme and chlorophylls (ed. Dailey, H.A.) 435– 490 (McGraw Hill, New York; 1990).

    Google Scholar 

  5. Wu, M.L. & Morgan, W.T. Proteins 20, 185–190 (1994).

    Article  CAS  Google Scholar 

  6. Smith, A. & Morgan, W.T. Biochem. J. 182, 47–54 (1979).

    Article  CAS  Google Scholar 

  7. Smith, A. & Hunt, R.T. Eur. J. Cell Biol. 53 , 234–245 (1990).

    CAS  PubMed  Google Scholar 

  8. Alam, J. & Smith, A. J. Biol. Chem. 264, 17637–17640 (1989).

    CAS  PubMed  Google Scholar 

  9. Eskew,J.D., Vanacore, R., Sung, L., Morales, P. & Smith, A. J. Biol. Chem. 274, 638– 648 (1999).

    Article  CAS  Google Scholar 

  10. Takahashi, N., Takahashi, Y. & Putnam, F.W. Proc. Natl. Acad. Sci. USA 82, 73–77 (1985).

    Article  CAS  Google Scholar 

  11. Morgan, W.T. & Smith, A. J. Biol. Chem. 259, 12001–12006 (1984).

    CAS  PubMed  Google Scholar 

  12. Hunt, L.T., Barker, W.C. & Chen, H.R. Protein Seq. Data Anal. 1, 21–26 (1987).

    CAS  PubMed  Google Scholar 

  13. Li, J. et al. Structure 3, 541–549 (1995).

    Article  CAS  Google Scholar 

  14. Gomis-Ruth, F.X. et al. J. Mol. Biol. 264, 556– 566 (1996).

    Article  CAS  Google Scholar 

  15. Faber, R. et al. Structure 3, 551–559 (1995).

    Article  CAS  Google Scholar 

  16. Lambright, D.G. et al. Nature 379, 311–319 (1996).

    Article  CAS  Google Scholar 

  17. Ter Haar, E., Musacchio, A., Harrison, S.C. & Kirchhausen, T. Cell 95, 563–573 ( 1998).

    Article  CAS  Google Scholar 

  18. Springer, T.A. Proc. Natl. Acad. Sci. USA 94, 65– 72 (1997).

    Article  CAS  Google Scholar 

  19. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  20. Smith, A., Tatum, F.M., Muster, P., Burch, M.K. & Morgan, W.T. J. Biol. Chem. 263, 5224– 5229 (1988).

    CAS  PubMed  Google Scholar 

  21. Baker, S.C. et al. J. Mol. Biol. 269, 440– 455 (1997).

    Article  CAS  Google Scholar 

  22. Morgan, W.T. et al. Biochim. Biophys. Acta 434, 311– 323 (1976).

    Article  CAS  Google Scholar 

  23. Cox, M.C. et al. Biochim. Biophys. Acta 1253, 215– 223 (1995).

    Article  Google Scholar 

  24. Morgan, W.T. et al. J. Biol. Chem. 268, 6256– 6262 (1993).

    CAS  PubMed  Google Scholar 

  25. Crane, B.R. et al. Science 278, 425–431 (1997).

    Article  CAS  Google Scholar 

  26. Quiocho, F.A. Phil. Trans. R. Soc. Lond. B 326, 341– 351 (1990).

    Article  CAS  Google Scholar 

  27. Anderson, B.F., Baker, H.M., Norris, G.E., Rumball, S.V. & Baker, E.N. Nature 344, 784–787 (1990).

    Article  CAS  Google Scholar 

  28. Baker, H.M., Day, C.L., Norris, G.E. & Baker, E.N. Acta Crystallogr. D 50, 380–384 ( 1994).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Methods Enzymol . 276, 307–325 ( 1997).

    Article  CAS  Google Scholar 

  30. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760– 763 (1994).

  31. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  32. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  33. Klegweyt, G.J. & Jones, T.A. CCP4/ESF-EACBM Newsletter 28, 56–59 ( 1993).

    Google Scholar 

  34. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  35. Murshodov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D 53, 240 –255 (1998).

    Article  Google Scholar 

  36. Kraulis, P.G J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Merrit, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  38. Nicholls, A., Bharadwaj, R. & Honig, B Biophys. J. 64, A166 (1993).

    Google Scholar 

  39. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Smith, and staff of the Stanford Synchrotron Radiation Laboratory, for help with data collection; N. Sakabe and staff at the Photon Factory (Tsukuba, Japan) for help with data collection on the deglycosylated hemopexin crystals; T. Kagawa, P. Metcalf and S. Moore for useful discussions; and L. Khalifah, M. Parry and N. Shipulina for isolation and purification of hemopexin. We are also grateful to J. Blackburn, M. Simmonds and B. Luisi for critical reading of the manuscript. This work was supported by the Health Research Council of New Zealand, by the Marsden Fund of New Zealand and by the U.S. National Institutes of Health (to A.S.). E.N.B. also receives research support as an International Research Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paoli, M., Anderson, B., Baker, H. et al. Crystal structure of hemopexin reveals a novel high-affinity heme site formed between two β-propeller domains. Nat Struct Mol Biol 6, 926–931 (1999). https://doi.org/10.1038/13294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing