Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR solution structure of the periplasmic chaperone FimC

Abstract

The NMR structure of the 205-residue periplasmic chaperone FimC is presented. This protein consists of two globular domains with immunoglobulin-like folds connected by a 15-residue linker peptide. The relative orientation of the two domains is defined by hydrophobic contacts and an interdomain salt bridge. FimC mediates the assembly of type-1 pili, which are filamentous surface organelles of uropathogenic Escherichia coli strains that enable the bacteria to attach to host cell surfaces and persist in macrophages. The availability of the NMR structure of FimC provides a new basis for rational design of drugs against infections by uropathogenic bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Ribbon drawing of one of the 20 energy-minimized DYANA conformers of FimC used to represent the NMR structure.
Figure 2: Interdomain NOEs and interdomain contacts in FimC.
Figure 3: Logarithmic plot of backbone amide proton exchange rates (s–1) at pH 5.0 and T = 38 °C versus the amino acid sequence of FimC.
Figure 4: ac, Stereoviews of superpositions for minimal r.m.s.d. of the backbone atoms N, Cα and C′ in the ß-strands of a representative energy-minimized DYANA conformer of FimC (blue) with the crystal structure of PapD (red and yellow).

Similar content being viewed by others

References

  1. Hultgren, S.J., Jones, C.H. & Normark, S. In Escherichia coli and Salmonella. Cellular and molecular biology. (ed. Neidhardt, F.E.) 2730–2756 (ASM Press, Washington, DC; 1996).

    Google Scholar 

  2. Hultgren, S.J., Abraham, S., Caparon, M., Falk, P., St. Geme 3rd, J.W. 3rd & Normark, S. Cell 73, 887– 901 (1993).

    Article  CAS  Google Scholar 

  3. Boarto, D.M. et al. Nature 389, 636–639 (1997).

    Article  Google Scholar 

  4. Jones, C.H. et al. Proc. Natl. Acad. Sci. USA 90, 8397 –8401 (1993).

    Article  CAS  Google Scholar 

  5. Klemm, P. Res. Microbiol. 143, 831–838 (1992).

    Article  CAS  Google Scholar 

  6. Kuehn, M.J. et al. Science 262, 1234– 1241 (1993).

    Article  CAS  Google Scholar 

  7. Hung, D.L., Knight, S.D., Woods, R.M., Pinker, J.S. & Hultgren, S.J. EMBO J. 15, 3792–3805 (1996).

    Article  CAS  Google Scholar 

  8. Hartl, F.U. Nature 381, 571–580 ( 1996).

    Article  CAS  Google Scholar 

  9. Connell, H. et al. Proc. Natl. Acad. Sci. USA 93, 9827 –9832 (1996).

    Article  CAS  Google Scholar 

  10. Langermann, S. et al. Science 276, 607–611 (1997).

    Article  CAS  Google Scholar 

  11. Holmgren, A., & Brändén, C.I. Nature 342, 248–251 (1989).

    Article  CAS  Google Scholar 

  12. Wüthrich, K. NMR of proteins and nucleic acids. (Wiley, New York; 1986).

    Book  Google Scholar 

  13. Pascal, S.M., Yamazaki, T., Singer, A.U., Kay, L.E. & Forman-Kay, J.D. Biochemistry 34 , 11353–11362 (1995).

    Article  CAS  Google Scholar 

  14. Feng, M.F. & Dyson, H. J. Biochemistry 35, 1–6 (1996).

    Article  Google Scholar 

  15. Gemmeker, G., Jahnke, W. & Kessler, H. J. Am. Chem. Soc. 115, 11620– 11621 (1993).

    Article  Google Scholar 

  16. Kuehn, M.J., Normark, S. & Hultgren, S.J. Proc. Natl. Acad. Sci. USA 88, 10586–10590 (1991).

    Article  CAS  Google Scholar 

  17. Holmgren, A., Kuehn, M.J., Branden, C.I., & Hultgren, S.J. EMBO J. 11, 1617–1622 ( 1992).

    Article  CAS  Google Scholar 

  18. Klemm, P., Christiansen, G., Kreft, B., Marre, R. & Bergmans, H.J. Bacteriol. 176, 2227–2234 (1994).

    Article  CAS  Google Scholar 

  19. Klemm, P., Jorgensen, B.J., Kreft, B. & Christiansen, G.J. Bacteriol. 177, 621–627 (1995).

    Article  CAS  Google Scholar 

  20. Jones, C.H., Danese, P.N., Pinker, J.S., Silhavy, T.J. & Hultgren, S.J. EMBO J. 16, 6394–6406 (1997).

    Article  CAS  Google Scholar 

  21. Dodson, K.D., Jacob-Dubuisoon, F., Stiker, R.T. & Hultgren S.J . Proc. Natl. Acad. Sci. USA 90, 3670– 3674 (1993).

    Article  CAS  Google Scholar 

  22. Jones, C.H. et al. Proc. Natl. Acad. Sci. USA 92, 2081 –2085 (1995).

    Article  CAS  Google Scholar 

  23. Pellecchia, M., Güntert, P., Glockshuber, R. & Wüthrich, K.J. Biomol. NMR 11, 229–230 (1998).

    Article  CAS  Google Scholar 

  24. Szyperski, T., Güntert, P., Otting, G. & Wüthrich, K. J. Magn. Reson. 99, 552–560 (1992).

    CAS  Google Scholar 

  25. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. J. Magn. Reson. 95, 636–641 (1991).

    CAS  Google Scholar 

  26. Chary, K.V.R., Otting, G. & Wüthrich, K. J. Magn. Reson. 93, 218– 224 (1991).

    CAS  Google Scholar 

  27. Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. J. Am. Chem. Soc. 117, 5312–5315 (1995).

    Article  CAS  Google Scholar 

  28. Güntert, P., Mumenthaler, C. & Wüthrich, K. J. Mol. Biol. 273, 283– 298 (1997).

    Article  Google Scholar 

  29. Güntert, P., Braun, W. & Wüthrich, K. J. Mol. Biol. 217, 517– 530 (1991).

    Article  Google Scholar 

  30. Guntert, P., Braun, W., Billeter, M. & Wüthrich, K. J. Am. Chem. Soc. 111, 3997–4004 ( 1989).

    Article  Google Scholar 

  31. Güntert, P., Berndt, K.D. & Wüthrich, K. J. Biomol. NMR 3, 601– 606 (1993).

    Article  Google Scholar 

  32. Senn, H. et al. FEBS Lett. 249, 113– 118 (1989).

    Article  CAS  Google Scholar 

  33. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Biochemistry 28 , 7510–7516 (1989).

    Article  CAS  Google Scholar 

  34. Luginbühl, P., Güntert, P., Billeter, M. & Wüthrich, K. J. Biomol. NMR 8, 136–146 (1996).

    Article  Google Scholar 

  35. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graphics 14, 52– 55 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Eggli for assistance with the preparation of FimC and S. Knight for providing us with coordinates of PapD and a PapD–peptide complex. Financial support was obtained from the Schweizerischer Nationalfonds to K.W. and R.G., and from an EMBO fellowship to M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Glockshuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellecchia, M., Güntert, P., Glockshuber, R. et al. NMR solution structure of the periplasmic chaperone FimC . Nat Struct Mol Biol 5, 885–890 (1998). https://doi.org/10.1038/2325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing