Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different folding transition states may result in the same native structure

Abstract

The crystal structures of two circular permutants of the α-spectrin SH3 domain with new termini within the RT loop (S19–P20s) and the distal loop (N47–D48s) have been determined at 2.02 and 1.77 Å resolution respectively. Both fold into the same three-dimensional structure as the wild-type SH3 domain except for the engineered loop that fuses the wild-type termini. The cleaved RT loop in S19–P20s loses nine conserved hydrogen bonds through local hydrogen bond unzipping; no hydrogen bond unzipping occurs in N47–D48s. The structures of the transition states for folding of wild-type α-spectrin SH3 domain and the two circular permutants have been examined by analysis of the folding kinetics of eight strategically distributed point mutants. Unlike the native structures, the transition states of the three proteins are considerably different, suggesting that there is no direct relationship between these two states in a protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2.1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  2. Alexander, P., Oman, J. & Bryan, P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptoccocal protein G. Biochemistry 31, 7243–7248 (1992).

    Article  CAS  Google Scholar 

  3. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  4. Villegas, V. et al. Evidence for a two state transition in the folding process of the activation domain of human procarboxipeptidase A2. Biochemistry 34, 15105–15110 (1995).

    Article  CAS  Google Scholar 

  5. Kragelund, B.B., Robinson, C.V., Knudesn, J., Dobson, C.M. & Poulsen, F.M. Folding of a four-helix bundle: studies of acyl-coenzyme A binding protein. Biochemistry 34, 7217–7224 (1995).

    Article  CAS  Google Scholar 

  6. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano, L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state transition. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  7. Fersht, A.R. Characterizing transition states in protein folding: an essential step in the puzzle. Curr. Opin. Struct. Biol. 5, 79–84 (1995).

    Article  CAS  Google Scholar 

  8. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: Evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  9. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys., 65, 44–45 (1968).

    Article  Google Scholar 

  10. Kuwajima, K., Semisotnov, G.V., Finkelstein, A.V., Sugai, S. & Ptitsyn, O.B. Secondary structure of globular proteins at the early and the final stages in protein folding. FEBS. Lett. 3, 265–268 (1993).

    Article  Google Scholar 

  11. Musacchio, A., Noble, M.E.M, Pautit, R., Wierenga, R. & Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359, 851–855 (1992).

    Article  CAS  Google Scholar 

  12. Musacchio, A., Wimanns, M. & Saraste, M. Structure and function of the SH3 domains. Progr. Biophys. molec. Biol. 61, 283–297 (1994).

    Article  CAS  Google Scholar 

  13. Viguera, A.R., Blanco, F.J. & Serrano, L. The order of secondary structure elements does not determine the structure of a protein but does affect its folding kinetics. J. Mol. Biol. 247, 670–681 (1995).

    CAS  PubMed  Google Scholar 

  14. Luzzati, V. Traitement statistique des erreurs dans la détermination des structures cristallines. Acta Crystallogr. 5, 802–810 (1952).

    Article  Google Scholar 

  15. Musacchio, A., Saraste, M. & Wilmanns, M. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nature Struct. Biol. 1, 546–551 (1994).

    Article  CAS  Google Scholar 

  16. Otzen, D.E., Itzhaki, L.S., Elmasry, N.F., Jackson, S.E. & Fersht, A.R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implication for the mechanism of protein folding Proc. Natl. Acad. Sci. USA 91, 10422–10425 (1994).

    Article  CAS  Google Scholar 

  17. Fersht, A.R., Itzhaki, L.S., Elmasry, N.F., Matthews, J.M. & Otzen, D.E. Single versus parallel pathways of protein folding and fractional formation of structure in the transition state. Proc. Natl. Acad. Sci. USA 91, 10426–10429 (1994).

    Article  CAS  Google Scholar 

  18. López-Hernández, E. & Serrano, L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI2. Folding & Design 1, 43–55 (1996).

    Article  Google Scholar 

  19. Fersht, A.R. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

    Article  CAS  Google Scholar 

  20. Viguera, A.R., Jiménez, M.A., Rico, M. & Serrano, L. Conformational analysis of peptides corresponding to β-hairpins and a β-sheet that represent the entire sequence of the α-spectrin SH3 domain. J. Mol. Biol. 255, 507–521 (1996).

    Article  CAS  Google Scholar 

  21. Shakhnovich, E., Abkevich, V. & Ptitsyn, O. Conserved residues and the mechanism of protein folding. Nature 379, 96–98 (1996).

    Article  CAS  Google Scholar 

  22. Harrison, S.C. & Durbin, R. Is there a single pathway for the folding of a polypeptide chain?. Proc. Natl. Acad. Sci. USA 82, 4028–4030 (1985).

    Article  CAS  Google Scholar 

  23. Navaza, J. AMoRe: An automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  25. Brünger, A.T. X-PLOR Version 3.1. Yale University, New Haven, CT, USA (1993).

    Google Scholar 

  26. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

  27. Kunkel, T.A. Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  CAS  Google Scholar 

  28. Peränen, J., Rikkonen, M., Hyvönen, M. & Kääriäinen, L. T7 vectors with a modified T7 lac promoter for expression of proteins in Escherichia coli. Anal. Biochem. 236, 371–373 (1996).

    Article  Google Scholar 

  29. Matthews, J.M.&., Fersht, A.R. Exploring the energy surface of protein folding by structure reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding of barnase. Biochemistry 34, 6805–6814 (1995).

    Article  CAS  Google Scholar 

  30. Vriend, G. WHAT IF - a molecular modeling and drug design program. J. Mol Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  31. Carson, M. Ribbons 2.0. J. Appl. Cryst. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viguera, A., Serrano, L. & Wilmanns, M. Different folding transition states may result in the same native structure. Nat Struct Mol Biol 3, 874–880 (1996). https://doi.org/10.1038/nsb1096-874

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1096-874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing