Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A perspective on biological catalysis

Abstract

We have analysed enzyme catalysis through a re-examination of the reaction coordinate. The ground state of the enzyme–substrate complex is shown to be related to the transition state through the mean force acting along the reaction path; as such, catalytic strategies cannot be resolved into ground state destabilization versus transition state stabilization. We compare the role of active-site residues in the chemical step with the analogous role played by solvent molecules in the environment of the noncatalysed reaction. We conclude that enzyme catalysis is significantly enhanced by the ability of the enzyme to preorganize the reaction environment. This complementation of the enzyme to the substrate's transition state geometry acts to eliminate the slow components of solvent reorganization required for reactions in aqueous solution. Dramatically strong binding of the transition state geometry is not required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haldane, J.B.S. Enzymes. Green and Co.: London, 1930.

    Google Scholar 

  2. Pauling, L. Molecular architecture and biological reactions. Chem. Engng News 24, 1375–1377 (1946).

    Article  CAS  Google Scholar 

  3. Pauling, L. Nature of forces between large molecules of biological interest. Nature, 161, 707–709 (1948).

    Article  CAS  Google Scholar 

  4. Bruice, T.C. & Pandit, U.K. Intramolecular models depicting the kinetic importance of “fit” in enzymatic catalysis. Proc. Natl. Acad. Sci. USA, 46, 402–404 (1960).

    Article  CAS  Google Scholar 

  5. Page, M.I. & Jencks, W.P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. USA 68, 1678–1683 (1971).

    Article  CAS  Google Scholar 

  6. Jencks, W.P. Binding energy, specificity and enzymic catalysis - the Circe effect. Adv. Enzmol. Relat. Areas Mol. Biol. 43, 219–410 (1975).

    CAS  Google Scholar 

  7. Schowen, R.L. Transition States of Biochemical Processes, chapter 2 (Plenum Press, New York, 1978).

    Google Scholar 

  8. Menger, F.M. On the source of ilntramolecular and enzymatic reactivity. Acc. Chem Res. 18, 128–134 (1985).

    Article  CAS  Google Scholar 

  9. Knowles, J.R. Enzyme catalysis: not different, just better. Nature 350, 121–124 (1991).

    Article  CAS  Google Scholar 

  10. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    Article  CAS  Google Scholar 

  11. Kraut, J. How do enzymes work? Science 242, 533–540 (1988).

    Article  CAS  Google Scholar 

  12. Wolfenden, R. Analog approaches to the structure of the transition state in enzyme reactions. Acc. Chem. Res. 5, 10–18 (1972).

    Article  CAS  Google Scholar 

  13. Fersht, A. Enzyme structure and mechanism. (W.H. Freeman and Co., New York, 1985).

    Google Scholar 

  14. Menger, F.M. Analysis of ground-State and transition-state effects in enzyme catalysis. Biochemistry 31, 5368–5373 (1992).

    Article  CAS  Google Scholar 

  15. Murphy, D.J. Revisiting ground state and transition state effects, the split-site model, and the “Fundamentalist Position” of Enzyme Catalysis. Biochemistry 34, 4507–4510 (1992).

    Article  Google Scholar 

  16. Amadei, A., Linssen, A.B.M. & Berendsen, H.J.C. Essential dynamics of proteins. Proteins Struct. Funct. Genet. 17, 412–425 (1993).

    Article  CAS  Google Scholar 

  17. Hayward, S., Kitao, A., G\=o, N. Harmonic and anharmonic aspects in the dynamics of BPTI: A normal mode analysis and principal component analysis. Prot. Sci. 3, 936–943 (1994).

    Article  CAS  Google Scholar 

  18. McCammon, J.A. & Harvey, S.C. Dynamics of Proteins and Nucleic Acids. (Cambridge University Press, New York 1987).

    Book  Google Scholar 

  19. Ben-Naim, A. Statistical Thermodynamics for Chemist and Biochemists 282–292 (Plenum Press, New York 1992).

    Book  Google Scholar 

  20. Northrup, S.H., Pear, M.R., Lee, C., McCammon, J.A. & Karplus, M. Dynamical theory of activated processes in globular proteins. Proc. Natl. Acad. Sci. USA 79, 4035–4039 (1982).

    Article  CAS  Google Scholar 

  21. vanderZwan, G. & Hynes, J.T. Nonequilibrium solvation dynamics in solution reactions. J. Chem. Phys. 78, 4174–4185 (1983).

    Article  CAS  Google Scholar 

  22. Austin, R.H., Beeson, K.W., Einstein, L., Frauenfelder, H. & Gunalus, I.C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  CAS  Google Scholar 

  23. Hagen, S.J., Hofrichter, J. & Eaton, W.A. Protein reaction kinetics in a room-temperature glass. Science 269, 959–962 (1995).

    Article  CAS  Google Scholar 

  24. Tonge, P.J. & Carey, P.R. Forces, bond lengths, and reactivity: fundamental insight into the mechanism of enzyme catalysis. Biochemistry 31, 9122–9125 (1992).

    Article  CAS  Google Scholar 

  25. Albery, W.J. & Knowles, J.R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976).

    Article  CAS  Google Scholar 

  26. Fierke, C.A. & Jencks, W.P. Two functional domains of coenzyme A activate coenzyme a transferase. J. Biol. Chem. 261, 7603–7606 (1986).

    CAS  PubMed  Google Scholar 

  27. Whitty, A., Fierke, C.A. & Jencks, W.P. Role of binding energy with coenzyme A in catalysis by 3-oxoacid coenzyme a transferase. Biochemistry 34, 11678–11689 (1995).

    Article  CAS  Google Scholar 

  28. Jones, P.G. & Kirby, A.J. Simple correlation between bond length and reactivity. Combined use of crystallographic and kinetic data to explore a reaction coordinate. J. Am. Chem. Soc. 106, 6207–6212 (1984).

    Article  CAS  Google Scholar 

  29. Warshel, A., Naray-Szabo, G., Sussman, F. & Hwang, J.K. How do serine proteases really work? Biochemistry 28, 3629–3637 (1989).

    Article  CAS  Google Scholar 

  30. Deng, H., Zheng, J., Clarke, A., Holbrook, J.J., Callender, R. & Burgner, J.W. Source of catalysis in dehydrogenase system. Ground-state interactions in the enzyme-substrate complex. Biochemistry 33, 2297–2305 (1994).

    Article  CAS  Google Scholar 

  31. Kramers, H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284 (1940).

    Article  CAS  Google Scholar 

  32. Lumry, R.B. Protein Solvent Interactions, (ed. R.B. Gregory) 1–141 (Marcel Dekker: New York 1995).

    Google Scholar 

  33. Cooper, A. & Dryden, D.T.F. The Enzyme Catalytic Process. (eds. A. Cooper, J.L Houben, L.C. Chien) 159–171 (Plenum Press, New York 1988).

    Google Scholar 

  34. Steinfeld, J.I., Francisco, J.S. & Hase, W.L. Chemical Kinetics and Dynamics 357–360 (Prentice Hall, New York 1989).

    Google Scholar 

  35. McQuarrie, D.A. Statistical Mechanics 57–60 (Harper and Row, New York 1976).

    Google Scholar 

  36. Privalov, P.L. & Makhatadze, G.I. Heat capacity of proteins. II. Partial heat capacity of the unfolded polypeptide chain of proteins: Protein unfolding efects. J. Mol. Biol. 213, 385–391 (1990).

    Article  CAS  Google Scholar 

  37. Gomez, J., Hilser, V.J., Xie, D. & Freire, E. The heat capacity of proteins. Proteins Struct. Funct. Genet. 22, 404–412 (1995).

    Article  CAS  Google Scholar 

  38. Zhu, L., Sage, J.T. & Champion, P.M. Observation of coherent reaction dynamics in heme proteins. Science 266, 629–632 (1994).

    Article  CAS  Google Scholar 

  39. Petrich, J.W., Martin, J.L., Houde, D., Poyart, C. & Orszag, A. Time-resolved Raman spectroscopy with subpicosecond resolution: Vibrational cooling and delocalization of strain energy in photodissociated (carbonmonoxy)hemoglobin. Biochemistry 26, 7914–7923 (1987).

    Article  CAS  Google Scholar 

  40. Lingle Jr., R., Xu, X., Zhu, H., Yu, S.C. & Hopkins, J.B. Direct observation of hot vibrations in photoexcited deoxyhemoglobin using picosecond Raman spectroscopy. J. Am. Chem. Soc. 113, 3992–3994 (1991).

    Article  CAS  Google Scholar 

  41. Li, P., Sage, J.T. & Champion, P.M. Probing picosecond processes with nanosecond lasers: Electronic and vibrational relaxation dynamics of heme proteins. J. Chem. Phys. 97, 3214–3227 (1992).

    Article  CAS  Google Scholar 

  42. Miller, R.J. Energetics and dynamics of deterministic protein motion. Acc. Chem. Res. 27, 145–150 (1994).

    Article  CAS  Google Scholar 

  43. Northrup, S.H. & McCammon, J.A. Gated reactions. J. Am. Chem. Soc. 106, 930–934 (1984).

    Article  CAS  Google Scholar 

  44. Frauenfelder, H. & Wolynes, P.G. Rate theories and puzzles of hemeprotein kinetics. Science 229, 337–345 (1985).

    Article  CAS  Google Scholar 

  45. Quiocho, F.A. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Phil. Trans. R. Soc. Lond. B 326, 341–352 (1990).

    Article  CAS  Google Scholar 

  46. Wolfenden, R. Enzyme catalysis: Conflicting requirement of substrate access and transition state affinity. Mol. Cell. Biochem. 3, 207–211 (1974).

    Article  CAS  Google Scholar 

  47. Maroncelli, M., Maclnnis, J. & Fleming, G.R. Polar solvent dynamics and electron-transfer reactions. Science 243, 1674–1681 (1989).

    Article  CAS  Google Scholar 

  48. Gertner, B.J., Whittnell, R.M., Wilson, K.R. & Hynes, J.T. Activation to the transition state: Reactant and solvent energy flow for a model SN2 reaction in water. J. Am. Chem. Soc. 113, 74–87 (1991).

    Article  CAS  Google Scholar 

  49. Doster, W., Cusack, S. & Petry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).

    Article  CAS  Google Scholar 

  50. Dewan, R.F.T.J.C. & Petsko, G.A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31, 2469–2481 (1992).

    Article  Google Scholar 

  51. Rasmussen, B.F., Stock, A.M., Ringe, D. & Petsko, G.A. Crystalline ribonuclease A loses function below the dyanmical transition at 220 K. Nature 357, 423–424 (1992).

    Article  CAS  Google Scholar 

  52. Parak, F. et al. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Letters 117, 368–372 (1980).

    Article  CAS  Google Scholar 

  53. Nocek, J.M. et al. Low-temperature, cooperative conformational transition within [Zn-cytochrome c peroxidase, cytochrome c] complexes: Variation with cytochrome. J. Am. Chem. Soc. 113, 6822–6831 (1991).

    Article  CAS  Google Scholar 

  54. Iorio, E.D. Protein dynamics. FEBS Letters 307, 14–19 (1992).

    Article  Google Scholar 

  55. Loncharich, R.J. & Brooks, B.R. Temperature dependence of dynamics of hydrated myoglobin. J. Mol. Biol. 215, 439–455 (1990).

    Article  CAS  Google Scholar 

  56. Smith, J., Kuczera, K. & Karplus, M. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc. Natl. Acad. Sci. USA 87, 1601–1605 (1990).

    Article  CAS  Google Scholar 

  57. More, N., Daniel, R.M. & Petach, H.H. The effect of low temperature on enzyme activity. Biochem. J. 305, 17–20 (1995).

    Article  CAS  Google Scholar 

  58. Warshel, A. Dynamics of enzymatic reactions. Proc. Natl. Acad. Sci. USA 81, 444–448 (1984).

    Article  CAS  Google Scholar 

  59. Xu, D., Martin, C. & Schulten, K. Molecular dynamics study of early picosecond events in the Bacteriorhodopsin photocycle: Dielectric response, vibrational cooling and the J, K intermediates. Biophys. J. 70, 453–460 (1996).

    Article  CAS  Google Scholar 

  60. Fierke, C.A., Johnson, K.A. & Benkovic, S.J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26, 4085–4092 (1987).

    Article  CAS  Google Scholar 

  61. Rejto, P.A., Bindwald, E. & Chandler, D. Visualization of fast energy flow and solvent caging in unimolecular dynamics. Nature 375, 129–131 (1995).

    Article  CAS  Google Scholar 

  62. Bruice, T.C. & Benkovic, S.J. Bioorganic Mechanisms (W.A. Benjamin, New York 1966).

    Google Scholar 

  63. Page, M.I. The energetics of neighbouring group participation. Chem. Soc. Rev. 2, 295–323 (1973).

    Article  CAS  Google Scholar 

  64. Kati, W.M. & Wolfenden, R. Contribution of a single hydroxyl group to transition-state discrimination by adenosine deaminase: Evidence for an “Entropy Trap” mechanism. Biochemistry 28, 7919–7927 (1989).

    Article  CAS  Google Scholar 

  65. Lightstone, F.C. & Bruice, T.C. Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. I. Cyclic anhydride formation by substituted glutarates, succinate and 3,6-Endoxo-δ-tetrahydrophthalate. J. Am. Chem. Soc. 118, 2595–2605 (1996).

    Article  CAS  Google Scholar 

  66. Zhang, B. ; Breslow, R. Enthalpic domination of the chelate effect in cyclodextrin dimers. J. Am. Chem. Soc. 115, 9353–9354 (1993).

    Article  CAS  Google Scholar 

  67. Orgel, L.E. An introduction to transition-metal chemistry: Ligand-field theory 14–16 (Methuen and Co. London, 1966).

  68. Chervenak, M.C. & Toone, E.J. A direct measure of the contribution of solvent reorganization to the enthalpy of ligand binding. J. Am. Chem. Soc. 116, 10533–10539 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannon, W., Singleton, S. & Benkovic, S. A perspective on biological catalysis. Nat Struct Mol Biol 3, 821–833 (1996). https://doi.org/10.1038/nsb1096-821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1096-821

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing