Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Following protein folding in real time using NMR spectroscopy

Abstract

The refolding of apo bovine α-lactalbumin has been monitored in real time by NMR spectroscopy following rapid in situ dilution of a chemically denatured state. By examining individual resonances in the time-resolved NMR spectra, the native state has been shown to emerge in a cooperative manner from an intermediate formed in the dead-time of the experiments. The kinetics of folding to the native state are closely similar to those observed by stopped-flow fluorescence and near-UV circular dichroism. The NMR spectrum of the transient intermediate resembles closely that of the well characterized stable molten globule state formed at low pH. The results suggest that NMR can play a key role in describing at an atomic level the structural transitions occurring during protein folding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matthews, C.R. Pathways of protein folding. A.Rev.Biochem. 62 653–683 (1993).

    Article  CAS  Google Scholar 

  2. Dobson, C.M., Folding and binding Curr. Opin. struct. Biol. 5, 56–121 (1995).

    Article  CAS  Google Scholar 

  3. Evans, P.A. & Radford, S.E. Probing the structure of folding intermediates. Curr. Opin. struct. Biol. 4, 100–106 (1994).

    Article  CAS  Google Scholar 

  4. Udgaonkar, J.B. & Baldwin, R.L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 335, 694–699 (1988).

    Article  CAS  Google Scholar 

  5. Roder, H., Elöve, G. & Englander, S.W. Structural characterisation of folding intermediates in cytochrome c by H-exchange labelling and proton NMR. Nature 335, 700–704 (1988).

    Article  CAS  Google Scholar 

  6. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 385, 302–307 (1992).

    Article  Google Scholar 

  7. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  Google Scholar 

  8. Dobson, C.M. Unfolded proteins, compact states and molten globules. Curr. Opin. struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  9. Ptitsyn, O.B. Structures of folding intermediates. Curr. Opin. struct. Biol. 5, 74–78 (1995).

    Article  CAS  Google Scholar 

  10. Frieden, C., Hoeltzli, S.D. & Ropson, I.J. NMR and protein folding: equilibrium and stopped-flow studies. Prot.Sci. 2, 2007–2014 (1993).

    Article  CAS  Google Scholar 

  11. Adler, M. & Scheraga, H.A. Structural studies of a folding intermediate of bovine pancreatic ribonuclease A by continuous recycled flow. Biochemistry 27, 2471–2480 (1988).

    Article  CAS  Google Scholar 

  12. Akasaka, K., Naito, A. & Nakatani, H. Temperature-jump NMR study of protein folding; Ribonuclease A at low pH. J. biomolec. NMR 1, 65–70 (1991).

    Article  CAS  Google Scholar 

  13. Kiefhaber, I., Labhardt, A.M. & Baldwin, R.L. Direct NMR evidence for an intermediate preceding the rate-limiting step in the unfolding of ribonuclease A. Nature 375, 513–515 (1995).

    Article  CAS  Google Scholar 

  14. Koide, S., Dyson, H.J. & Wright, P.E. Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry 32, 12299–12310 (1993).

    Article  CAS  Google Scholar 

  15. Kuwajima, K., MitanI, M. & SugaI, S. Characterization of the critical state in protein folding; effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of α-lactalbumin. V. molec. Biol. 206, 547–561 (1989).

    Article  CAS  Google Scholar 

  16. Alexandrescu, A.T., Broadhurst, R.W., Wormald, C., Chyan, C.-L., Baum, J. & Dobson, C.M. 1H-NMR assignments and local environments of aromatic residues in bovine, human and guinea pig variants of α-lactalbumin. Eur. J. Biochem. 210, 699–709 (1992).

    Article  CAS  Google Scholar 

  17. Kuwajima, K., Yamaya, H., Miwa, S., SugaI, S. & Nagamura, T. Rapid formation of secondary structure framework in protein folding studied by stopped flow CD. FEBS lett. 221, 115–118 (1987).

    Article  CAS  Google Scholar 

  18. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular protein structure. Proteins Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  19. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. & Razgulyaev, O.I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20–24 (1990).

    Article  CAS  Google Scholar 

  20. Chaffotte, A.F., Guillou, Y. & Goldberg, M.E. Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg white lysozyme. Biochemistry 31, 9694–9702 (1992)

    Article  CAS  Google Scholar 

  21. Kuwajima, K., Hiraoka, Y., IkeguchI, M. & SugaI, S. Comparison of the transient folding intermediates in lysozyme and α-lactalbumin. Biochemistry 24, 874–881 (1985).

    Article  CAS  Google Scholar 

  22. Baum, J., Dobson, C.M., Evans, P.A. & Hanley, C. Characterisation of a partially folded protein by NMR methods: Studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  23. Alexandrescu, A.T., Evans, P.A., Pitkeathly, M., Baum, J. & Dobson, C.M. Structure and dynamics of the acid-denatured molten globule state of α-lactalbumin: A two-dimensional NMR study. Biochemistry 32, 1707–1718 (1993).

    Article  CAS  Google Scholar 

  24. Morozova, L.A., Haynie, D.T., Arico-Muendel, C., Van Dael, H. & Dobson, C.M. Structural basis of the stability of a lysozyme molten globule. Nature struct. Biol. 2, 871–875 (1995).

    Article  CAS  Google Scholar 

  25. Peng, Z.-Y. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2131–2141 (1994).

    Google Scholar 

  26. Wu, L.C., Peng, Z.-Y. & Kim, P.S. Bipartite structure of the α-lactalbumin molten globule. Nature struct. Biol. 2, 281–286 (1995).

    Article  CAS  Google Scholar 

  27. Dobson, C.M., Evans, P.A. & Radford, S.E. Understanding how proteins fold: the lysozyme story so far. Trends biochem. Sci. 19, 31–37 (1994).

    Article  CAS  Google Scholar 

  28. Karplus, M. & Sali, A. Theoretical studies of protein folding and unfolding. Curr. Opin. struct. Biol. 5, 58–73 (1995).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. Molscript: a program to produce both detailed and schematic plots of protein structure. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Wagner, G. Prospects for NMR of large proteins. J. biomolec. NMR 3, 375–385 (1993).

    Article  CAS  Google Scholar 

  31. Williams, R.J.P. Protein dynamics studied by NMR. Eur. biophys. J. 21, 393–401 (1993).

    Article  CAS  Google Scholar 

  32. Dobson, C.M. Solid evidence for molten globules. Curr. Biol. 4, 636–640 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbach, J., Forge, V., van Nuland, N. et al. Following protein folding in real time using NMR spectroscopy. Nat Struct Mol Biol 2, 865–870 (1995). https://doi.org/10.1038/nsb1095-865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1095-865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing