Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A covalent crosslink converts the hammerhead ribozyme from a ribonuclease to an RNA ligase

Abstract

The hammerhead ribozyme is a more efficient ribonuclease than an RNA ligase. Under typical reaction conditions, the rate of RNA chain cleavage is 100-fold faster than the rate of the reverse ligation reaction such that virtually all of the hammerhead is in its cleaved form at equilibrium. Here we show that the introduction of a crosslink away from the catalytic core of the hammerhead has little effect on the cleavage rate but dramatically increases the ligation rate, thereby making the hammerhead an efficient RNA ligase. This experiment emphasizes the role of molecular flexibility in defining the properties of a macromolecular catalyst and suggests why other small ribozymes are more efficient ligases than ribonucleases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An intermolecular ribozyme–substrate crosslink.
Figure 2: The rate of ligation is increased for the crosslinked hammerhead.
Figure 3: The intermolecular crosslink alters the cleavage-ligation equilibrium.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hutchins, C.J., Rathjen, P.D., Forster, A.C. & Symons, R.H. Nucleic Acids Res. 14, 3627–3640 (1986).

    Article  CAS  Google Scholar 

  2. Hertel, K.J., Herschlag, D. & Uhlenbeck, O.C. Biochemistry 33, 3374–3385 (1994).

    Article  CAS  Google Scholar 

  3. Hertel, K.J. & Uhlenbeck, O.C. Biochemistry 34, 1744–1749 (1995).

    Article  CAS  Google Scholar 

  4. Scott, W.G., Finch, J.T. & Klug, A. Cell 81, 991–1002 (1995).

    Article  CAS  Google Scholar 

  5. Stage-Zimmermann, T.K. & Uhlenbeck, O.C. Biochemistry 37, 9386–9393 (1998).

    Article  CAS  Google Scholar 

  6. Sigurdsson, S.T., Tuschl, T. & Eckstein, F. RNA 1, 575–583 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cohen, S.B. & Cech, T.R. J. Am. Chem. Soc. 119, 6259–6268 (1997).

    Article  CAS  Google Scholar 

  8. Fedor, M.J. & Uhlenbeck, O.C. Proc. Natl. Acad. Sci. USA 87, 1668–1672 (1990).

    Article  CAS  Google Scholar 

  9. Fedor, M.J. & Uhlenbeck, O.C. Biochemistry 31, 12042–12054 (1992).

    Article  CAS  Google Scholar 

  10. Slim, G. & Gait, M.J. Nucleic Acids Res. 19, 1183–1188 (1991).

    Article  CAS  Google Scholar 

  11. Perreault, J.P., Labuda, D., Usman, N., Yang, J.-H. & Cedergren, R. Biochemistry 30, 4020–4025 (1991).

    Article  CAS  Google Scholar 

  12. Perkins, T.A., Wolf, D.E. & Goodchild, J. Biochemistry 35, 16370–16377 (1996).

    Article  CAS  Google Scholar 

  13. Clouet-d'Orval, B. & Uhlenbeck, O.C. RNA 2, 483–491 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Long, D.M., LaRiviere, F.J. & Uhlenbeck, O.C. Biochemistry 34, 14435–14440 (1995).

    Article  CAS  Google Scholar 

  15. Murray, J.B., Szoke, H., Szoke, A. & Scott, W.G. Mol. Cell 5, 279–287 (2000).

    Article  CAS  Google Scholar 

  16. Simorre, J.P., Legault, P., Hangar, A.B., Michiels, P. & Pardi, A. Biochemistry 36, 518–525 (1997).

    Article  CAS  Google Scholar 

  17. Bassi, G.S., Murchie, A.I.H. & Lilley, D.M. RNA 2, 756–768 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Amiri, K.M.A. & Hagerman, P.J. J. Mol. Biol. 261, 125–134 (1996).

    Article  CAS  Google Scholar 

  19. Cole, P.E. & Crothers, D.M. Biochemistry 11, 4368–4374 (1972).

    Article  CAS  Google Scholar 

  20. Zarrinkar, P.P. & Williamson, J.R. Nature Struct. Biol. 3, 432–438 (1996).

    Article  CAS  Google Scholar 

  21. Fang, X.W., Pan, T. & Sosnick, T.R. Nature Struct. Biol. 6, 1091–1095 (1999).

    Article  CAS  Google Scholar 

  22. Hegg, L.A. & Fedor, M.J. Biochemistry 34, 15813–15828 (1995).

    Article  CAS  Google Scholar 

  23. Berzal-Herranz, A., Joseph, S. & Burke, J.M. Genes Dev. 6, 129–134 (1992).

    Article  CAS  Google Scholar 

  24. Saville, B.J. & Collins, R.A. Proc. Natl. Acad. Sci. USA 88, 8826–8830 (1991).

    Article  CAS  Google Scholar 

  25. Beattie, T.L. & Collins, R.A. J. Mol. Biol. 267, 830–840 (1997).

    Article  CAS  Google Scholar 

  26. Esteban, J.A., Banerjee, A.R. & Burke, J.M. J. Biol. Chem. 272, 13629–13639 (1997).

    Article  CAS  Google Scholar 

  27. Fedor, M.J. Biochemistry 38, 11040–11050 (1999).

    Article  CAS  Google Scholar 

  28. Rupert, P.B. & Ferre-D'Amare, A.R. Nature 410, 780–786 (2001).

    Article  CAS  Google Scholar 

  29. Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A. & Beigelman, L. Chem. Biol. 7, 323–334 (2000).

    Article  CAS  Google Scholar 

  30. Santoro, S.W. & Joyce, G.F. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  31. Pan, T. & Uhlenbeck, O.C. Nature 358, 560–563 (1992).

    Article  CAS  Google Scholar 

  32. Chervitz, S.A. & Falke, J.J. J. Biol. Chem. 270, 24043–24053 (1995).

    Article  CAS  Google Scholar 

  33. Hertel, K.J. et al. Nucleic Acids Res. 20, 3252 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to S. Cohen for assistance with the thiol–disulfide interchange crosslinking and W. Pieken for supplying the 2′ amino phosphoramidites used in this study. This research was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olke C. Uhlenbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stage-Zimmermann, T., Uhlenbeck, O. A covalent crosslink converts the hammerhead ribozyme from a ribonuclease to an RNA ligase. Nat Struct Mol Biol 8, 863–867 (2001). https://doi.org/10.1038/nsb1001-863

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001-863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing