Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

UDP-galactopyranose mutase has a novel structure and mechanism

Abstract

Uridine diphosphogalactofuranose (UDP-Galf ) is the precursor of the d-galactofuranose (Galf ) residues found in bacterial and parasitic cell walls, including those of many pathogens, such as Mycobacterium tuberculosis and Trypanosoma cruzi. UDP-Galf is made from UDP-galactopyranose (UDP-Galp) by the enzyme UDP-galactopyranose mutase (mutase). The mutase enzyme is essential for the viability of mycobacteria and is not found in humans, making it a viable therapeutic target. The mechanism by which mutase achieves the unprecedented ring contraction of a nonreducing sugar is unclear. We have solved the crystal structure of Escherichia coli mutase to 2.4 Å resolution. The novel structure shows that the flavin nucleotide is located in a cleft lined with conserved residues. Site-directed mutagenesis studies indicate that this cleft contains the active site, with the sugar ring of the substrate UDP-galactose adjacent to the exposed isoalloxazine ring of FAD. Assay results establish that the enzyme is active only when flavin is reduced. We conclude that mutase most likely functions by transient reduction of substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of UDP-galactopyranose mutase in the biosynthesis of the cell wall.
Figure 2: Structure of UDP-galactopyranose mutase from E. coli.
Figure 3: Putative active site of UDP-galactopyranose mutase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Besra, G.S. et al. Biochemistry 34, 4257–4266 (1995).

    Article  CAS  Google Scholar 

  2. Pan, F. Jackson, M., Ma, Y. & McNeil, M. J. Bacteriol. 183 3991–3998 (2001).

    Article  CAS  Google Scholar 

  3. Knirel, Y.A. & Kochetkov, N.L. Biochemistry (Moscow) 59, 1325–1383 (1994).

    Google Scholar 

  4. Joiner, K.A. Annu Rev. Microbiol. 42, 201–230 (1988).

    Article  CAS  Google Scholar 

  5. Turco, S.J. et al. J. Biol. Chem. 264, 6711–6715 (1989).

    CAS  PubMed  Google Scholar 

  6. McConville, M.J., Thomas-Oates, J.E., Ferguson, M.A.J. & Homans, S.W. J. Biol. Chem. 265, 19611–19623 (1990).

    CAS  PubMed  Google Scholar 

  7. Ilg, T. et al. J. Biol. Chem. 267, 6834–6840 (1992).

    CAS  PubMed  Google Scholar 

  8. Spath, G.F. et al. Proc. Natl. Acad. Sci. USA 97, 9258–9263 (2000).

    Article  CAS  Google Scholar 

  9. Previato, J.O. et al. J. Biol. Chem. 265, 2518–2526 (1990).

    CAS  PubMed  Google Scholar 

  10. Parra, E. et al. Carbonhydr. Res. 257, 239–248 (1994).

    Article  CAS  Google Scholar 

  11. Takayanagi, T., Kimura, A., Chiba, S. & Ajisaka, K. Carbohydr. Res. 256, 149–158 (1994).

    Article  CAS  Google Scholar 

  12. Nakajima, T., Yoshida, M., Nakamura, M., Hiura, N. & Matsuda, K. J. Biochem. 96, 1013–1020 (1984).

    Article  CAS  Google Scholar 

  13. Nassau, P.M. et al. J. Bacteriol. 178, 1047–1052 (1996).

    Article  CAS  Google Scholar 

  14. Koplin, R., Brisson, J.-R. & Whitfield, C. J. Biol. Chem. 272, 4121–4128 (1997).

    Article  CAS  Google Scholar 

  15. Barlow, J.N., Marcinkeviciene, J. & Blanchard, J.S. in Enzymatic mechanisms (eds Frey, P.A. & Northrop, D.B.) 98–106 (IOS Press, Amsterdam; 1999).

    Google Scholar 

  16. Zhang, Q. & Liu, H.-W. J. Am. Chem. Soc. 122, 9065–9070 (2000).

    Article  CAS  Google Scholar 

  17. Barlow, J.N., Girvin, M.E. & Blanchard, J.S. J. Am. Chem. Soc. 121, 6968–6969 (1999).

    Article  CAS  Google Scholar 

  18. Barlow, J.N. & Blanchard, J.S. Carbohydr. Res. 328, 473–480 (2000).

    Article  CAS  Google Scholar 

  19. McMahon, S.A., Leonard, G.L., Buchanan, L.V., Giraud, M.-F. & Naismith, J.H. Acta Crystallogr. D 55, 399–402 (1999).

    Article  CAS  Google Scholar 

  20. Jones, S. & Thornton, J.M. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  21. Holm, L. & Sanders, C. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  22. Fraaije, M.W. & Mattevi, A. TIBS 25, 126–132 (2000).

    CAS  PubMed  Google Scholar 

  23. Karplus, P.A. & Schulz, G.E. J. Mol. Biol. 210, 163–180 (1989).

    Article  CAS  Google Scholar 

  24. Hunter, W.N. et al. J. Mol. Biol. 227, 322–333 (1992).

    Article  CAS  Google Scholar 

  25. Artymiuk, P.J., Poirrette, A.R., Grindley, H.M., Rice, D.W. & Willett, P. J. Mol. Biol. 243, 327–344 (1994).

    Article  CAS  Google Scholar 

  26. Charnock, S.J. & Davies, G.J. Biochemistry 38, 6380–6385 (1999).

    Article  CAS  Google Scholar 

  27. Gastinel, L.N., Cambillau, C. & Bourne, Y. EMBO J. 18, 3546–3557 (1999).

    Article  CAS  Google Scholar 

  28. Busch, C., Hofmann, F., Gerhard, R. & Aktories, K. J. Biol. Chem. 275, 13228–13234 (2000).

    Article  CAS  Google Scholar 

  29. Hill, S. Austin, S. Eydmann, T., Jones, T. & Dixon, R. Proc. Natl. Acad. Sci. USA 93, 2143–2148 (1996)

    Article  CAS  Google Scholar 

  30. Sanders, D.A.R., McMahon, S.A., Leonard, G.L. & Naismith, J.H. Acta Crystallogr. D In the press (2001).

  31. Brünger, A.T., et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  32. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Lee, R. et al. Anal. Biochem. 242, 1–7 (1996).

    Article  CAS  Google Scholar 

  34. Esnouf, R.M. J. Mol. Graph. Model. 15,132–134 (1997).

    Article  CAS  Google Scholar 

  35. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  36. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the BBSRC. We thank W. Crocker, S. Chapman, S. Daff, R. Harris, N. Scrutton and G. Leonard for their help with experiments. We thank the reviewers and editor for assistance in revising the manuscript. We thank J. Blanchard and J. Barlow for helpful discussions. J.H.N. is a BBSRC Career Development Fellow. C.W. is a CIHR Senior Scientist and is supported by the Canadian Bacterial Diseases Network (NCE program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Naismith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, D., Staines, A., McMahon, S. et al. UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Mol Biol 8, 858–863 (2001). https://doi.org/10.1038/nsb1001-858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001-858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing