Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Musing on the structural organization of the exosome complex

Abstract

The exosome complex of 3′→5′ exoribonucleases functions in both the precise processing of 3′ extended precursor molecules to mature stable RNAs and the complete degradation of other RNAs. Both processing and degradative activities of the exosome depend on additional cofactors, notably the putative RNA helicases Mtr4p and Ski2p. It is not known how these factors regulate exosome function or how the exosome distinguishes RNAs destined for processing events from substrates that are to be completely degraded. Here we review the available data concerning the modes of action of the exosome and relate these to possible structural arrangements for the complex. As no detailed structural data are yet available for the exosome complex, or any of its constituent enzymes, this discussion will rely heavily on rather speculative models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for the activation of the exosome.

Similar content being viewed by others

References

  1. Mian, S. Nucleic Acids Res. 25, 3187–3195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, S. Nucleic Acids Res. 25, 5110–5118 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitchell, P., Petfalski, E., Schevchenko, A., Mann, M. & Tollervey, D. Cell 91, 457–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Allmang, C. et al. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deutscher, M.P. J. Bacteriol. 175, 4577–4583 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burkard, K.T.D. & Butler, J.S. Mol. Cell. Biol. 20, 604–616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allmang, C., et al. EMBO J. 18, 5399–5410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allmang, C., Mitchell, P., Petfalski, E. & Tollervey, D. Nucleic Acids Res. 28, 1684–1691 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kufel, J. et al. Mol. Cell. Biol. 20, 5415–5424 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Cell, in the press (2000).

  11. van Hoof, A., Lennertz, P. & Parker, R. Mol. Cell. Biol. 20, 441–452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de la Cruz, J., Kressler, D., Tollervey, D. & Linder, P. EMBO J. 17, 1128–1140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jacobs Anderson, J.S. & Parker, R. EMBO J. 17, 1497–1506 (1998).

    Article  Google Scholar 

  14. van Hoof, A. & Parker, R. Cell 99, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Baker, R., Harris, K. & Zhang, K. Genetics 149, 73–85 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shiomi, T. et al. J. Biochem. 123, 883–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. Cell 92, 367–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. DeMartino, G.N. & Slaughter, C.A. J. Biol. Chem. 274, 22123–22126 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S. & Finley, D. EMBO J. 17, 4909–4919 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Palombella, V.J., Rando, O.J., Goldberg, A.L. & Maniatis, T. Cell 78, 773–785 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Sears, C., Olesen, J., Rubin, D., Finley, D. & Maniatis, T. J. Biol. Chem. 273, 1409–1419 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, L., DeMartino, G.N. & Greene, W.C. Cell 92, 819–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, L. & Ghosh, S. Mol. Cell. Biol. 16, 2248–2254 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell, P., Petfalski, E. & Tollervey, D. Genes Dev. 10, 502–513 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Ost Kelly, K. & Deutscher, M.P. J. Biol. Chem. 267, 17153–17158 (1992).

    Google Scholar 

  26. Grunberg-Manago, M., Ortiz, P.J. & Ochoa, S. Science 122, 907–910 (1955).

    Article  CAS  PubMed  Google Scholar 

  27. Py, B., Higgins, C.F., Krisch, H.M. & Carpousis, A.J. Nature 381, 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Miczak, A., Kaberdin, V. R., Wei, C.-L. & Lin-Chao, S. Proc. Natl. Acad. Sci. USA 93, 3865–3869 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Z.-F., Zuo, Y., Li, Z., Rudd, K.E. & Deutscher, M.P. J. Biol. Chem. 272, 14077–14080 (1998).

    Article  Google Scholar 

  30. Stevens, A. J. Biol. Chem. 255, 3080–3085 (1979).

    Google Scholar 

  31. Kenna, M., Stevens, A., McCammon, M. & Douglas, M.G. Mol. Cell. Biol. 13, 341–350 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hilleren, P. & Parker, R. RNA 5, 711–719 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. González, C.I., Ruiz-Echevarria, M.J., Vasudevan, S., Henry, M.F. & Peltz, S.W. Mol. Cell 5, 489–499 (2000).

    Article  PubMed  Google Scholar 

  34. Le Hir, H., Moore, M.J. & Maquat, L.E. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank A. van Hoof and R. Parker for sharing data prior to publication. This work is funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Philip Mitchell or David Tollervey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, P., Tollervey, D. Musing on the structural organization of the exosome complex. Nat Struct Mol Biol 7, 843–846 (2000). https://doi.org/10.1038/82817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing