Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP

A Correction to this article was published on 01 October 1998

Abstract

N-ethylmaleimide-sensitive factor (NSF) is a hexameric ATPase which primes and/or dissociates SNARE complexes involved in intracellular fusion events. Each NSF protomer contains three domains: an N-terminal domain required for SNARE binding and two ATPase domains, termed D1 and D2, with D2 being required for oligomerization. We have determined the 1.9 Å crystal structure of the D2 domain of NSF complexed with ATP using multi-wavelength anomalous dispersion phasing. D2 consists of a nucleotide binding subdomain with a Rossmann fold and a C-terminal subdomain, which is structurally unique among nucleotide binding proteins. There are interactions between the ATP moiety and both the neighboring D2 protomer and the C-terminal subdomain that may be important for ATP-dependent oligomerization. Of particular importance are three well-ordered and conserved lysine residues that form ionic interactions with the β- and γ-phosphates, one of which likely contributes to the low hydrolytic activity of D2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of NSF homologs from Chinese Hamster Ovary (SWISSPROT-P18708), mouse (P46460), human (P46459), fly isoform 1 (P46461), fly isoform 2 (P54351) and yeast (P18759).
Figure 2: Electron density maps around the ATP binding site, contoured at 1.25 σ
Figure 3: a,Ribbon diagram of the NSF-D2 hexamer, as viewed from the N-terminal end down the six-fold symmetry axis.
Figure 4: a,Ribbon diagram of theNSF-D2 protomer consisting of two subdomains, an upper N-terminal subdomain in green and a lower C-terminal subdomain in blue-green.
Figure 5: a,Molscript and POV-ray rendering of the hydrogen bonds between Arg 617 from one protomer (blue) and the Phe 618 backbone oxygen from the neighboring protomer (green) in the pore of the D2 domain.
Figure 6: a,Contact regions between subdomains of a protomer, in red and orange, and between neighboring protomers, in yellow and purple.

Similar content being viewed by others

References

  1. Malhotra, V., Orci, L., Glick, B.S., Block, M.R. & Rothman, J.E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221–227 (1988).

    Article  CAS  Google Scholar 

  2. Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T. & Rothman, J.E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. U SA 85, 7852–7856 (1988).

    Article  CAS  Google Scholar 

  3. Haas, A. and Wickner, W. Homotypic vacuole fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF). EMBO J 15, 3296–3305 (1996).

    Article  CAS  Google Scholar 

  4. Banerjee, A., Barry, V.A., DasGupta, B.R. & Martin, T.F.J. N-ethylmaleimide sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223–20226 (1996).

    Article  CAS  Google Scholar 

  5. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  6. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  CAS  Google Scholar 

  7. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complex visualized by quick freeze/deep-etch electron microscopy. Cell 90, 523–525 (1997).

    Article  CAS  Google Scholar 

  8. Confalonieri, F. and Duguet, M. A 200-amino acid ATPase module in search of a basic function. BioEssays 17, 639–650 (1995).

    Article  CAS  Google Scholar 

  9. Beyer, A. Sequence analysis of the AAA protein family. Prot. Sci. 6, 2043–2058 (1997).

    Article  CAS  Google Scholar 

  10. Tagaya, M., Wilson, D.W., Brunner, M., Arango, N. & Rothman, J.E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 (1993).

    CAS  PubMed  Google Scholar 

  11. Morgan, A., Dimaline, R. & Burgoyne, R.D. The ATPase activity of N -ethylmaleimide-sensitive fusion protein (NSF) is regulated by soluble NSF attachment proteins. J. Biol. Chem. 269, 29347–29350 (1994).

    CAS  PubMed  Google Scholar 

  12. Sumida, M., Hong, R.M. & Tagaya, M. Role of two nucleotide-binding regions in an N-ethylmaleimide-sensitive factor involved in vesicle-mediated protein transport. J. Biol. Chem. 269, 20636–20641 (1994).

    CAS  PubMed  Google Scholar 

  13. Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994).

    Article  CAS  Google Scholar 

  14. Nagiec, E.E., Bernstein, A. & Whiteheart, S.W. Each domain of the N-ethylmaleimide sensitive fusion protein contributes to its transport activity. J. Biol. Chem. 270, 29182–29188 (1995).

    Article  CAS  Google Scholar 

  15. Wilson, D.W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).

    Article  CAS  Google Scholar 

  16. Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).

    Article  CAS  Google Scholar 

  17. Fleming, K.G. et al. A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein, NSF. J. Biol. Chem. 273, 15675–15681 (1998).

    Article  CAS  Google Scholar 

  18. Peters, J.-M., Walsh, M.J. & Franke, W.W. An abundant and ubiquitous homooligomeric rinγ-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J 9, 1757–1767 (1990).

    Article  CAS  Google Scholar 

  19. Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199 (1974).

    Article  CAS  Google Scholar 

  20. Holm, L. and Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  21. Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the d' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).

    Article  CAS  Google Scholar 

  22. Walker, J.E., Saraste, M.J., Runswick, J.J. & Gay, N.J. Distantly related sequences in the α- and β-subunits of ATPase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945–951 (1982).

    Article  CAS  Google Scholar 

  23. Morgan, A. & Burgoyne, R.D. Is NSF a fusion protein? Trends Cell Biol. 5, 335–339 (1995).

    Article  CAS  Google Scholar 

  24. Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, PB. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATP---S. Nature Struct Biol 3, 170–177 (1996).

    Article  CAS  Google Scholar 

  25. Saraste, M. and Sibbald, P.R. The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biol Sci 15, 430–434 (1990).

    Article  Google Scholar 

  26. Matveeva, E.A., He, P. & Whiteheart, S.W. N-ethylmaleimide sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct. J. Biol. Chem. 272, 26413–26418 (1997).

    Article  CAS  Google Scholar 

  27. Bernard, A. and Payton, M. Fermentation and growth of Escherichia coli for optimal protein production. In Current Protocols in Protein Science. (Coligan,J.E., Dunn, B.M., Plough, H.L., Speicher, D.W. & Wingfield, P.T., Eds) Chapter 5.3 (John Wiley & Sons, Inc., New York; 1995).

    Google Scholar 

  28. Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. & Hendrickson, W.A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 48–54 (1994).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. In Data Collection and Processing. (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  30. Brünger, A.T. et al. Crystallography and NMR System (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D, in the press (1998).

  31. Phillips, J.C. & Hodgson, K.O. The use of anomalous scattering effects to phase diffraction patterson from macromolecules. Acta Crystallogr. A 36, 856–864 (1980).

    Article  Google Scholar 

  32. Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A 52, 659–668 (1996).

    Article  Google Scholar 

  33. Jiang, J.-S. & Brünger, A.T. Protein hydration observed by x-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).

    Article  CAS  Google Scholar 

  34. Zhang, K.Y.J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A 46, 41–46 (1990).

    Article  Google Scholar 

  35. Jones, T.A. Zou, J.Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Rice, L.M. & Brünger, A.T. Torsion Angle Dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).

    Article  CAS  Google Scholar 

  37. Yu, H.-A., Karplus, M. & Hendrickson, W.A. Restrains in temperature-factor refinement for macromolecules: an evaluation by molecular dynamics. Acta Crystallogr. D 41, 191–201 (1985).

    Article  Google Scholar 

  38. Lenzen, C.U., Oppitz, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell, in the press (1998).

  39. Kabsch, W. and Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  40. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  41. Hofmann, K. & Baron, M.D. Boxshade 3.21 http://www.ch.embnet.org/software/BOX_form.html (1998).

  42. Esnouf, R.M. Bobscript: An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  43. The POV-ray Team. Pov-ray -- the persistence of vision raytracer, http://www.povray.org/ (1998).

  44. Kraulis, P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  46. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  47. Jorgensen, W.L. and Rives, J.T. The OPLS potential functions for protein energy minimizations for crystals of cyclic peptide and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  CAS  Google Scholar 

  48. Burling, F.T., Weis, W.I., Flaherty, K.M. & Brünger, A.T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271, 72–77 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S.C. Stroupe and D. Fasshauer for stimulating discussions, R.B. Sutton for expert advise during the course of the project, C. Ostermeier for aid with crystallization, S.R. Sprang for critical reading of the manuscript, L. Esser for assistance in figure preparation, H. Bellamy for assistance with data collection at SSRL 1-5 (SSRL is funded by the Department of Energy, Office of Basic Energy Sciences; the SSRL Biotechnology Program is supported by the NIH, Biomedical Research Technology Program, Division of Research Resources; further SSRL support is provided by the Department of Energy, Office of Health and Environmental Research), and A. Joachimiak and the Structural Biology Center for assistance with data collection at APS (collected at the 19ID beamline of the Structural Biology Center at the Advanced Photon Source at Argonne National Laboratory: this national user facility is supported by the Office of Health and Environmental Research, U.S. Department of Energy). Support by the National Institutes of Health to A.T.B. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel T. Brünger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R., Hanson, P., Jahn, R. et al. Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat Struct Mol Biol 5, 803–811 (1998). https://doi.org/10.1038/1843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing