Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A short linear peptide that folds into a native stable β-hairpin in aqueous solution

Abstract

The conformational properties of a 16 residue peptide, corresponding to the second β-hairpin of the B1 domain of protein G, have been studied by nuclear magnetic resonance spectroscopy (NMR). This fragment is monomeric under our experimental conditions and in pure water adopts a population containing up to 40% native-like β-hairpin structure. The detection by NMR of a native-like β-hairpin in aqueous solution, reported here for the first time, indicates that these structural elements may have an important role in the early steps of protein folding. It also provides a good model to study in detail the sequence determinants of β-hairpin structure stability, as has been done with α-helices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baldwin, R.L. Seeding protein folding. Trends biochem. Sci. 11, 6–9 (1986).

    Article  CAS  Google Scholar 

  2. Wright, P.E., Dyson, H.J. & Lerner, R.A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry 27, 7167–7175 (1988).

    Article  CAS  Google Scholar 

  3. Dyson, H.J. & Wright, P.E. Peptide conformation and protein folding. Curr. Opin. struct. Biol. 3, 60–65 (1993).

    Article  CAS  Google Scholar 

  4. Brown, J.E. & Klee, W.A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry 10, 470–476 (1971).

    Article  CAS  Google Scholar 

  5. Jiménez, M.A., Herranz, J., Nieto, J.L., Rico, M. & Santoro, J. 1H-NMR and CD evidence of folding of the isolated ribonuclease 50-61 fragment. FEBS Lett. 21 320–324 (1987).

    Article  Google Scholar 

  6. Jiménez, M.A., Rico, M., Herranz, J., Santoro, J. & Nieto, J.L. 1H-NMR assignment and folding of the isolated ribonuclease 21-42 fragment. Eur. J. Biochem. 75 101–109 (1988).

    Article  Google Scholar 

  7. Segawa, S.I., Fukuno, T., Fujiwara, K. & Noda, Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or breaking propensity of peptide segments. Biopolymers 31, 1497–509 (1991).

    Article  Google Scholar 

  8. Bruch, M.D., Dhingra, M.M. & Gierasch, L.M. Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an α-helical region of carboxypeptidase A. Prot. Struct. Funct. Genet. 10, 130–139 (1991).

    Article  CAS  Google Scholar 

  9. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. & Wright, P.E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding II. Myohemerytrhin. J. molec. Biol. 226, 795–817 (1992).

    Article  CAS  Google Scholar 

  10. Jiménez, M.A. et al. CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. Eur. J. Biochem. 211, 569–581 (1993).

    Article  Google Scholar 

  11. Kemmink, J. & Creighton, T.E. Local conformations of peptides representing the entire sequence of bovine pancreatic trysin inhibitor and their roles in folding. J. molec. Biol. 34 861–878 (1993).

    Article  Google Scholar 

  12. Kuroda, Y. Residual helical structure in the C-terminal fragment of cytochrome c. Biochemistry 32 1219–1224 (1993).

    Article  CAS  Google Scholar 

  13. Waltho, J.P., Feher, V.A., Merutka, G., Dyson, H.J. & Wright, P.E. Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. Biochemistry 32, 6337–6347 (1993)

    Article  CAS  Google Scholar 

  14. Jiménez, M.A., Muñoz, V., Rico, M. & Serrano, L. NMR analysis of peptides encompassing all the α-helices of three α/β parallel proteins: CheY, Flavodoxin and P21ras. I. Basic principles governing α-helix stability on protein fragments. J. molec. Biol. Submitted, (1994).

  15. Blanco, F.J. et al. Tendamistat (12-26) fragment. NMR Characterization of isolated β-turn folding intermediates. Eur. J. Biochem. 200, 345–351 (1991).

    Article  CAS  Google Scholar 

  16. Sönnichsen, F.D., Eyk, J.E.V., Hodges, R.S. & Sykes, B.D. Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 8790–8798 (1992).

    Article  CAS  Google Scholar 

  17. Shin, H.C., Merutka, G., Waltho, J.P., Wright, P.E. & Dyson, H.J. Peptide models of protein folding initiation sites. 2. The G-H turn region of myoglobin acts as a helix stop signal. Biochemistry 32, 6348–6355 (1993).

    Article  CAS  Google Scholar 

  18. Dyson, H.J. & Wright, P. Defining solution conformations of small linear peptides. A. Rev. Biophys. biophys. Chem. 20, 519–538 (1991).

    Article  CAS  Google Scholar 

  19. Cox, J.P.L., Evans, P.A., Packman, L.C., Williams, D.H. & Woolfson, D.N. Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. J. molec. Biol. 234, 483–492 (1993).

    Article  CAS  Google Scholar 

  20. Blanco, F.J. et al. NMR solution structure of the isolated N-terminal fragment of protein-G B1 domain. Evidence of trifluoroethanol induced native-like β-hairpin formation. Biochemistry 33, 6009–6014 (1994).

    Article  Google Scholar 

  21. Blanco, F.J. et al. NMR evidence of a short linear peptide that folds into a β-hairpin in aqueous solution. J. Am. chem. Soc. 115, 5887–5888 (1993).

    Article  CAS  Google Scholar 

  22. Dyson, H.J. et al. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding II. Plastocyanin. J. molec. Biol. 226, 819–835 (1992).

    Article  CAS  Google Scholar 

  23. Varley, P. et al. Kinetics of folding of the all-β-sheet protein interleukin-1b. Science 260, 1110–1113 (1993).

    Article  CAS  Google Scholar 

  24. Viguera, A.R., Martínez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano, L. Thermodynamic and kinetic analysis of the SH3 domain of spectrin shows a two-state folding transition. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  25. Fahnestock, S.R., Alexander, P., Nagle, J. & Filpula, D. Gene for a Immunoglobulin-binding protein from a group G streptococcus. J. Bact. 167, 870–880 (1986).

    Article  CAS  Google Scholar 

  26. Gronenborn, A.M. et al. A novel, highly stable fold of the inmunoglobulin binding domain of streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  27. Alexander, P., Faneshtock, S., Lee, T., Orban, J. & Bryan, P. Thermodynamic analysis of the folding of streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 31, 3597–3603 (1992).

    Article  CAS  Google Scholar 

  28. Woody, R.W. Aromatic side-chain contributions to the far ultraviolet dichroism of peptides and proteins. Biopolymers 17, 1471–1467 (1978).

    Article  Google Scholar 

  29. Wüthrich, K. NMR of Proteins and Nucleic Acids. (John Wiley, New York, 1986).

    Book  Google Scholar 

  30. Jiménez, M.A. et al. A study of the NH NMR signals of Gly-Gly-X-Ala tetrapeptides in H2O at low temperature. J. molec. Struct. 143, 435–438 (1986).

    Article  Google Scholar 

  31. Andersen, N.H. et al. Conformational isomerism of endothelin in acidic aqueous media: a quantitative NOESY analysis. Biochemistry 31, 1280–1295 (1992).

    Article  CAS  Google Scholar 

  32. Fehrentz, J.-A. et al. Peptides mimicking the flap of human renin: synthesis, conformation, and antibody recognition. Biochemistry 27, 4071–4078 (1988).

    Article  CAS  Google Scholar 

  33. Kemmink, J., van Mierlo, C.P.M., Scheek, R.M. & Creighton, T.E. Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N-terminus of bovine pancreatic trypsin inhibitor. J. molec. Biol. 230, 312–322 (1993).

    Article  CAS  Google Scholar 

  34. Bundi, A. & Wüthrich, K. 1H-NMR parameters of the common amino acid residues measured in aqueous solution of the linear tetrapeptides H-Gly-Gly-X-Ala-OH. Biopolymers. 18, 285–298 (1979).

    Article  CAS  Google Scholar 

  35. Wishart, D.S., Sykes, B.D. & Richards, F.M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. molec. Biol. 222, 1423–1431 (1991).

    Article  Google Scholar 

  36. Peña, M.C. et al. Conformational properties of the isolated 1–23 fragment of human hemoglobin α-chain. Biochim. biophys. Acta 957, 380–389 (1989).

    Article  Google Scholar 

  37. Rizo, J., Blanco, F.J., Kobe, B., Bruch, M.D. & Gierasch, L.M. Conformational behaviour of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry 32, 4881–4894 (1993).

    Article  CAS  Google Scholar 

  38. Alexander, P., Orban, J. & Bryan, P. Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry 31, 7243–7248 (1992).

    Article  CAS  Google Scholar 

  39. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2.1. Evidence for a two state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  40. Gronenborn, A.M. & Clore, G.M. Experimental support for the “hydrophobic zipper” hypothesis. Science 263, 536 (1994).

    Article  CAS  Google Scholar 

  41. Burley, S.K. & Petsko, G.A. Electrostatic interactions in aromatic oligopeptides contribute to protein stability. Trends Biotechnol. 7, 354–359 (1989).

    Article  CAS  Google Scholar 

  42. Serrano, L., Bycroft, M. & Fersht, A.R. Aromatic-aromatic interactions and protein stability: investigation by double mutant cycle. J. molec. Biol. 218, 465–475 (1991).

    Article  CAS  Google Scholar 

  43. Minor, D.L.J. & Kim, P.S. Measurement of the β-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  44. Scholtz, J.M. & Baldwin, R.L. The mechanism of α-helix formation by peptides. A. Rev. Biophys. biomolec. Struct. 21, 95–118 (1992).

    Article  CAS  Google Scholar 

  45. Gill, S.C. & von Hippel, P.H. Calculation of protein extintion coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  46. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins in Analytical Ultracentrifugation in Biochemistry and Polymer Science (Eds Harding, S. E., Rowe, A.J. & Horton, J.C.) 90–125 (Royal Society of Chemistry, Cambridge, 1992).

    Google Scholar 

  47. Ralston, G. Introduction to analytical ultracentrifugation. Beckman Instruments Inc., CA (1993).

    Google Scholar 

  48. McRorie, D.K. & Voelker, P.J. Self-associating systems in the analytical centrifuge. Beckman Instruments Inc., CA (1993).

    Google Scholar 

  49. Kim, H., Deonier, R.C. & Williams, J.W. The investigation of self-association reactions. Chem. Rev. 77, 659–690 (1977).

    Article  CAS  Google Scholar 

  50. Hsu, C.S. & Minton, A.P. A strategy for efficient characterization of macromolecular heteroassociations via measurements of sedimentation equilibrium. J. molec. Recog. 4, 93–104 (1991).

    Article  CAS  Google Scholar 

  51. INSIGHTII (version 2.2.0). Biosym technologies, 9685 Scranton Road, San Diego, CA 92121–92777 (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, F., Rivas, G. & Serrano, L. A short linear peptide that folds into a native stable β-hairpin in aqueous solution. Nat Struct Mol Biol 1, 584–590 (1994). https://doi.org/10.1038/nsb0994-584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0994-584

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing