Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition states and the meaning of Φ-values in protein folding kinetics

Abstract

What is the mechanism of two-state protein folding? The rate-limiting step is typically explored through a Φ-value, which is the mutation-induced change in the transition state free energy divided by the change in the equilibrium free energy of folding. Φ-values ranging from 0 to 1 have been interpreted as meaning the transition state is denatured-like (0), native-like (1) or in-between. But there is no classical interpretation for the experimental Φ-values that are negative or >1. Using a rigorous method to identity transition states via an exact lattice model, we find that nonclassical Φ-values can arise from parallel microscopic flow processes, such as those in funnel-shaped energy landscapes. Φ < 0 results when a mutation destabilizes a slow flow channel, causing a backflow into a faster flow channel. Φ > 1 implies the reverse: a backflow from a fast channel into a slow one. Using a 'landscape mapping' method, we find that Φ correlates with the acceleration/deceleration of folding induced by mutations, rather than with the degree of nativeness of the transition state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Folding kinetics of a lattice model chain.
Figure 2: A negative Φ-value is defined as an acceleration of folding following a destabilizing mutation.
Figure 3: Landscape mapping.
Figure 4: Correlation of Φ with τmut and τwt.

Similar content being viewed by others

References

  1. Jackson S.E. & Fersht A.R. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  2. Milla, M. & Sauer, R.T. Biochemistry 33, 1125–1133 (1994).

    Article  CAS  Google Scholar 

  3. Huang, G.S. & Oas, T.S. Biochemistry 34, 3884–3892 (1995).

    Article  CAS  Google Scholar 

  4. Schindler, T., Herrler, M., Marahiel, M.A. & Schmid, F.X. Nature Struct. Biol. 2, 663–673 (1995).

    Article  CAS  Google Scholar 

  5. Guijarro, J.I., Morton, C.J., Plaxco, K.W., Campbell, I.D. & Dobson, C.M. J. Mol. Biol. 276, 657–667 (1998).

    Article  CAS  Google Scholar 

  6. Matthews, C.R. Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  7. Laurents, D.V. & Baldwin, R.L. Biophys. J. 75, 428–434 (1998).

    Article  CAS  Google Scholar 

  8. Englander, S. W. Annu. Rev. Biophys. Biomol. Struct. 29, 213–238 (2000).

    Article  CAS  Google Scholar 

  9. Dill, K.A. & Chan, H.S. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  10. Fersht, A.R., Leatherbarrow, R.J. & Wells T.N.C. Nature 322, 284–286 (1986)

    Article  CAS  Google Scholar 

  11. Beasty, A.M. et al. Biochemistry 25, 2965–2974 (1986).

    Article  CAS  Google Scholar 

  12. Goldenberg, D.P., Frieden, R.W., Haack, J.A. & Morrison, T.B. Nature 338, 127–132 (1989).

    Article  CAS  Google Scholar 

  13. Fersht, A.R., Leatherbarrow, R.J. & Wells T.N.C. Biochemistry 26, 6030–6038 (1987).

    Article  CAS  Google Scholar 

  14. Matouschek, A., Kellis, J.T., Serrano, L. & Fersht, A.R. Nature 340, 122–126 (1989).

    Article  CAS  Google Scholar 

  15. Matouschek, A. & Fersht, A.R. Methods Enzymol. 202, 81–112 (1991).

    Google Scholar 

  16. Alexander, P., Orban, J. & Bryan, P. Biochemistry 31, 7243–7248 (1992).

    Article  CAS  Google Scholar 

  17. Grantcharova, V.P., Riddle, D.S., Santiago, J. V. & Baker, D. Nature Struct. Biol. 5, 714–720 (1998).

    Article  CAS  Google Scholar 

  18. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721–729 (1998).

    Article  CAS  Google Scholar 

  19. Fersht, A.R. Structure and mechanism in protein science (W. H. Freeman, New York; 1999).

  20. Matouschek, A., Serrano, L. & Fersht, A.R. J. Mol. Biol. 224, 819–835 (1992).

    Article  CAS  Google Scholar 

  21. Gay, G., Ruiz-Sans, J., Davis, B. & Fersht, A.R. Proc. Natl. Acad. Sci. USA 91, 10943–10946 (1994).

    Article  Google Scholar 

  22. Nolting, B. & Andert, K. Proteins 41, 288–298 (2000).

    Article  CAS  Google Scholar 

  23. Goldenberg, D.P. Nature Struct. Biol. 6, 987–990 (1999).

    Article  CAS  Google Scholar 

  24. Daggett, V., Li, A., Itzhaki, S.L., Otzen, D.E. & Fersht, A.R. J. Mol. Biol. 257, 430–440 (1996).

    Article  CAS  Google Scholar 

  25. Lazaridis, T. & Karplus, M. Science 278, 1928–1931 (1997).

    Article  CAS  Google Scholar 

  26. Li L., Mirny A.L. & Shakhonivch, E.I. Nature Struct. Biol. 7, 336–342 (2000).

    Article  CAS  Google Scholar 

  27. Shea, J., Onuchic, J.N. & Brooks, C.L. J. Chem. Phys. 113, 7663–7671 (2000).

    Article  Google Scholar 

  28. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  29. Ueda, Y., Taketomi, H. & Go, N. Int. J. Peptide. Res. 7, 445–459 (1975).

    Google Scholar 

  30. Hoang, T.X. & Cieplak, M. J. Chem. Phys. 112, 6851–6862 (2000)

    Article  CAS  Google Scholar 

  31. Karplus, M. & Weaver, D.L. Nature 260, 404–406 (1976).

    Article  CAS  Google Scholar 

  32. Matagne, A., Radford, S.E. & Dobson, C.M. J. Mol. Biol. 267, 1068–1074 (1997).

    Article  CAS  Google Scholar 

  33. Ladurner, A.G., Itzhaki, S.L., Daggett, V. & Fersht A.R. Proc. Natl. Acad. Sci. USA 95, 8473–8478 (1998).

    Article  CAS  Google Scholar 

  34. Guo, Z. & Thirumalai, D. Folding Des. 2, 377–391 (1997).

    Article  CAS  Google Scholar 

  35. Pande, V.S., Grosberg, A.Y., Rokhsar, D. & Tanaka, T. Curr. Opin. Struct. Biol. 8, 68–79 (1998).

    Article  CAS  Google Scholar 

  36. Klimov, D.K. & Thirumalai, D. J. Mol. Biol. 282, 471–492 (1998).

    Article  CAS  Google Scholar 

  37. Dokholayan, N.V., Buldrey, S.V., Stanley, H.E. & Shakhnovich, E.I. J. Mol. Biol. 296, 1183–1187 (2000).

    Article  Google Scholar 

  38. Fersht, A.R. Curr. Opin. Struct. Biol. 7, 3–9 (1997).

    Article  CAS  Google Scholar 

  39. Galzitskaya, O.V. & Finkelstein, A.V. Proc. Natl. Acad. Sci. USA 99, 11299–11304 (1999).

    Article  Google Scholar 

  40. Dill, K.A., Fiebig, K.M. & Chan H.S. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Schonbrun, D. Thirumalai, A. Fersht, D. Goldenberg and A. Robertson for helpful comments and the NIH for grant support. We would also like to acknowledge a TUBITAK fellowship to S.B.O. We are grateful to J. Schreurs for the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken A. Dill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkan, S., Bahar, I. & Dill, K. Transition states and the meaning of Φ-values in protein folding kinetics. Nat Struct Mol Biol 8, 765–769 (2001). https://doi.org/10.1038/nsb0901-765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0901-765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing