Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of flap endonuclease-1 from Methanococcus jannaschii

Abstract

Flap endonuclease-1 (FEN-1), a structure specific nuclease, is an essential enzyme for eukaryotic DNA replication and repair. The crystal structure of FEN-1 from Methanococcus jannaschii, determined at 2.0 Å resolution, reveals an active site with two metal ions residing on top of a deep cleft where several conserved acidic residues are clustered. Near the active site, a long flexible loop comprised of many basic and aromatic residues forms a hole large enough to accommodate the DNA substrate. Deletion mutations in this loop significantly decreased the nuclease activity and specificity of FEN-1, suggesting that the loop is critical for recognition and cleavage of the junction between single and double-stranded regions of flap DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Multiple isomorphous replacement (MIR) electron density map of Mj FEN-1 at 3.0 Å resolution.
Figure 2: Stereo diagrams showing the significant interactions within Mj FEN-1.
Figure 3: a, The endonuclease activities of Mj FEN-1 for 5' flap (lanes 2–6) and pseudo Y DNA (lanes 7–11).
Figure 4: a, A stereo diagram showing the solvent accessible surface of Mj FEN-1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Harrington, J. J. & Lieber, M. R. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: Implications for nucleotide excision repair. Genes Dev. 8 1344– 1355 (1994).

    Article  CAS  Google Scholar 

  2. Harrington, J. J. & Lieber, M. R. The characterization of a mammalian structure-specific DNA endonuclease. EMBO J. 13, 1235– 1246 (1994).

    Article  CAS  Google Scholar 

  3. Robins, P., Pappin, D., Wood, R. D. & Lindahl, T. Structural and functional homology between mammalian DNase IV and the 5'-nuclease domain of E. coli DNA polymerase I. J. Biol. Chem. 269, 28535– 28538 (1994).

    CAS  PubMed  Google Scholar 

  4. Ishimi, Y., Claude, A., Bullock, P. & Hurwitz, J. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem. 263, 19723– 19733 (1988).

    CAS  PubMed  Google Scholar 

  5. Waga, S., Baue, G. & Stillman, B. Reconstitution of complete SV40 DNA replication using purified proteins. J. Biol. Chem. 269, 10923– 10934 (1994).

    CAS  PubMed  Google Scholar 

  6. Goulian, M., Richards, S. H., Heard, C. J. & Bigsby, B. M. Discontinuous DNA synthesis by purified mammalian proteins. J. Biol. Chem. 265, 18461– 18471 (1990).

    CAS  PubMed  Google Scholar 

  7. Murante, R. S., Rumbaugh, J. A., Barnes, C. J., Norton, J. R., Bambara, R. A. Calf RTH1 nuclease can remove initiator RNAs of Okazaki fragments by endonuclease action. J. Biol. Chem. 271, 25888– 25897 (1996).

    Article  CAS  Google Scholar 

  8. Sommers, C. H., Miller, E. J., Dujon, B., Prakash, L. & Prakash, S. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5' - to 3' exonuclease required for lagging strand DNA synthesis in reconstituted systems. J. Biol. Chem. 270, 4193– 4196 ( 1995).

    Article  CAS  Google Scholar 

  9. Turchi, J. J. & Bambara, R. A. Completion of lagging strand DNA replication using purified proteins. J. Biol. Chem. 269, 1191– 1196 (1993).

    Google Scholar 

  10. Li, X., Li, J., Harrington, J. J., Lieber, M. R. & Burgers, P. M. J. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by PCNA. J. Biol. Chem. 270, 22109– 22112 (1995).

    Article  CAS  Google Scholar 

  11. Wu, X., Li, J., Li, X., Hsieh, C -L., Burgers, P. M. J. & Lieber, M. R. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA . Nuc. Acids Res. 24, 2036– 2043 (1996).

    Article  CAS  Google Scholar 

  12. Klungland, A. & Lindahl, T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN-1). EMBO J. 16, 3341– 3348 (1997).

    Article  CAS  Google Scholar 

  13. Johnson, R., Kovvali, G., Prakash, L. & Prakash, S. Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science 269, 238– 240 (1995).

    Article  Google Scholar 

  14. Tishkoff, D. X., Fisoli, N., Gaida, N., Kolodner, R. D. A novel mutation avoidence mechanim dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88, 253– 263 ( 1997).

    Article  CAS  Google Scholar 

  15. Eshleman, J. R. & Markowitz, S. D. Microsatellite instability in inherited and sporadic neoplasms. Curr. Opin. Oncol. 7, 83– 89 (1995).

    Article  CAS  Google Scholar 

  16. Scherly, D. et al. Complementation of the DNA repair defect in xeroderma pigmentation group G cells by a human cDNA related to yeast RAD2. Nature 363, 182– 185 (1993).

    Article  CAS  Google Scholar 

  17. Madura, K., & Prakash, P. Nucleotide sequence, transcript mapping, and regulation of the rad2 gene of Saccharomyces cerevisiae. J. Bacteriol. 166, 914– 923 (1986).

    Article  CAS  Google Scholar 

  18. Lyamichev, V., Brow, M. A. D. & Dahlberg, J. E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerase. Science 260, 778– 783 (1993).

    Article  CAS  Google Scholar 

  19. Gutman, P. D. & Minton, K. W. Conserved sites in the 5'-3' exonuclease domain of Escherichia coli DNA polymerase. Nuc. Acids Res. 21, 4406– 4407 ( 1993).

    Article  CAS  Google Scholar 

  20. Kim, Y et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 612– 616 (1995).

    Article  CAS  Google Scholar 

  21. Ceska, T. A., Sayers, J. R., Stier, G. & Suck, D. A helical arch allowing single-stranded DNA to thread through T5 5' exonuclease. Nature 382, 90– 93 ( 1996).

    Article  CAS  Google Scholar 

  22. Sander, C. and Schneider, R. Data base of homology derived protein structures and the structural meaning of sequence alignment. Proteins Struct. Funct. Genet. 9, 56– 68 (1991).

    Article  CAS  Google Scholar 

  23. Mueser, T. C., Nossal, N. G. and Hyde, C. C. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic protein. Cell 95, 1101– 1112 ( 1996).

    Article  Google Scholar 

  24. Artymiuk, P. J., Ceska, T. A., Suck, D. & Sayers, J. R. Prokaryotic 5'-3' exonucleases share a common core structure with gamma-delta resolvase . Nucleic Acids Res 25, 4224– 4229 (1997).

    Article  CAS  Google Scholar 

  25. Shen, B., Nolan, J. P., Sklar, L. A. & Park, M. S. Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res. 25, 3332– 3338 (1997).

    Article  CAS  Google Scholar 

  26. Beese, L. S. & Steitz, T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli polymerase I: a two metal ion mechanism. EMBO J. 10. 25– 33 (1991).

    Article  CAS  Google Scholar 

  27. Mol, C. D., Kuo, C. F., Thayer, M. M., Cunningham, R. P. & Tainer, J. A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381– 386 (1995).

    Article  CAS  Google Scholar 

  28. Barzilay, G. et al. Identification of critical active site residues in the multifunctional human DNA repair enzyme HAP1. Nature Struct Biol. 2, 562– 567 (1995).

    Article  Google Scholar 

  29. Murante, R. S., Rust, L & Bambara, R. A. Calf 5' to 3' exo/endonuclease must slide from 5' end of the substarte to perform structure-specific cleavage. J. Biol. Chem., 270, 30377– 30383 (1995).

    Article  CAS  Google Scholar 

  30. Otwinowski, Z & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307– 326 (1997).

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project Number 4. The CCP4 Suite: Program for protein crystallography. Acta. Crystallogr. D 50, 760– 763 (1994).

  32. Sack, J. S. CHAIN: a crystallographic modelling program. J. Molec. Graphics 6, 224– 225 (1988).

    Article  Google Scholar 

  33. Brünger, A. T. X-PLOR, a system for crystallography and NMR, Version 3.1 (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  34. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577– 2637 (1983).

    Article  CAS  Google Scholar 

  35. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insight from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. S. Park (Los Alamos National Lab), S. S. Kim, E. Kim (L.G. Biotech) for their invaluable comments. We thanks to K. W. Bae and C. S. Cho for technical assistance. This work was supported by Biotech 2000 program from MOST and KIST 2000 program from KIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunje Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, K., Baek, K., Kim, HY. et al. The crystal structure of flap endonuclease-1 from Methanococcus jannaschii . Nat Struct Mol Biol 5, 707–713 (1998). https://doi.org/10.1038/1406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing