The laminin-binding domain of agrin is structurally related to N-TIMP-1

Article metrics

Abstract

Agrin is the key organizer of postsynaptic differentiation at the neuromuscular junction. This organization activity requires the binding of agrin to the synaptic basal lamina. Binding is conferred by the N-terminal agrin (NtA) domain, which mediates a high-affinity interaction with the coiled coil domain of laminins. Here, we report the crystal structure of chicken NtA at 1.6 Å resolution. The structure reveals that NtA harbors an oligosaccharide/oligonucleotide-binding fold with several possible sites for the interaction with different ligands. A high structural similarity of NtA with the protease inhibition domain in tissue inhibitor of metalloproteinases-1 (TIMP-1) supports the idea of additional functions of agrin besides synaptogenic activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structure of the NtA domain.
Figure 2: NtA is structurally related to N-TIMP-1.
Figure 3: Stereo view of the section of the final 2.7 Å resolution 2Fo − Fc electron density map (blue; 1 σ contour level) around the N-terminal segment of the NtA structure in complex (starting with Cys 2).
Figure 4: Electrostatic surface representation of the complexed NtA domain.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Gautam, M. et al. Cell 85, 525–535 (1996).

  2. 2

    Gesemann, M., Denzer, A.J. & Ruegg, M.A. J. Cell Biol. 128, 625–636 (1995).

  3. 3

    Burgess, R.W., Nguyen, Q.T., Son, Y.J., Lichtman, J.W. & Sanes, J.R. Neuron 23, 33–44 (1999).

  4. 4

    Ruegg, M.A. & Bixby, J.L. Trends Neurosci. 21, 22–27 (1998).

  5. 5

    Denzer, A.J., Hauser, D.M., Gesemann, M. & Ruegg, M.A. Cell Tissue Res. 290, 357–365 (1997).

  6. 6

    Denzer, A.J. et al. EMBO J. 17, 335–343 (1998).

  7. 7

    Kammerer, R.A. et al. EMBO J. 18, 6762–6770 (1999).

  8. 8

    Burgess, R.W., Skarnes, W.C. & Sanes, J.R. J. Cell Biol. 151, 41–52 (2000).

  9. 9

    Neumann, F. et al. Mol. Cell. Neurosci. 17, 208–225 (2001).

  10. 10

    Murzin, A.G. EMBO J. 12, 861–867 (1993).

  11. 11

    Holm, L. & Sander, C. Nucleic Acids Res. 22, 3600–3609 (1994)

  12. 12

    Gomis-Ruth, F.X. et al. Nature 389, 77–81 (1997).

  13. 13

    Bode, W. & Huber, R. Biochim. Biophys. Acta 1477, 241–252 (2000).

  14. 14

    Nagase, H. & Woessner, J.F. Jr. J. Biol. Chem. 274, 21491–21494 (1999).

  15. 15

    Brew, K., Dinakarpandian, D. & Nagase, H. Biochim. Biophys. Acta 1477, 267–283 (2000).

  16. 16

    Murphy, G. et al. Biochemistry 30, 8097–8102 (1991).

  17. 17

    Huang, W. et al. FEBS Lett. 384, 155–161 (1996).

  18. 18

    Wu, B. et al. J. Mol. Biol. 295, 257–268 (2000).

  19. 19

    Caterina, N.C. et al. J. Biol. Chem. 272, 32141–32149 (1997).

  20. 20

    Huang, W., Meng, Q., Suzuki, K., Nagase, H. & Brew, K. J. Biol. Chem. 272, 22086–22091 (1997).

  21. 21

    Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Protein Eng. 10, 1–6 (1997).

  22. 22

    Meng et al. J. Biol. Chem. 274, 10184–10189 (1999).

  23. 23

    Reist, N.E., Magill, C. & McMahan, U.J. J. Cell. Biol. 105, 2457–2469 (1987).

  24. 24

    Budisa, N. et al. Eur. J. Biochem. 230, 788–796 (1995).

  25. 25

    Leslie, A.G.W. MOSFLM users guide (MRC-LMB, Cambridge; 1994).

  26. 26

    Collaborative Computing Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  27. 27

    Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

  28. 28

    De La Fortelle, E. & Bricogne, G. Methods Enzymol. 276 472–493 (1997)

  29. 29

    Turk, D.C., PhD Thesis, Weiterentwicklung eines Programmes für Molekülgraphik und Elektronendichte -Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen (Technische Universität München, Munich, Germany;1992).

  30. 30

    Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

Download references

Acknowledgements

We thank N.J. Bulleid and G. Orriss for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation to J.E.

Author information

Correspondence to Jürgen Engel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stetefeld, J., Jenny, M., Schulthess, T. et al. The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat Struct Mol Biol 8, 705–709 (2001) doi:10.1038/90422

Download citation

Further reading