A histone fold TAF octamer within the yeast TFIID transcriptional coactivator

Article metrics

  • A Correction to this article was published on 01 March 2002

Abstract

Gene activity in a eukaryotic cell is regulated by accessory factors to RNA polymerase II, which include the general transcription factor complex TFIID, composed of TBP and TBP-associated factors (TAFs). Three TAFs that contain histone fold motifs (yTAF17, yTAF60 and yTAF61) are critical for transcriptional regulation in the yeast Saccharomyces cerevisiae and are found in both TFIID and SAGA, a multicomponent histone acetyltransferase transcriptional coactivator. Although these three TAFs were proposed to assemble into a pseudooctamer complex, we find instead that yTAF17, yTAF60 and yTAF61 form a specific TAF octamer complex with a fourth TAF found in TFIID, yTAF48. We have reconstituted this complex in vitro and established that it is an octamer containing two copies each of the four components. Point mutations within the histone folds disrupt the octamer in vitro, and temperature-sensitive mutations in the histone folds can be specifically suppressed by overexpressing the other TAF octamer components in vivo. Our results indicate that the TAF octamer is similar both in stoichiometry and histone fold interactions to the histone octamer component of chromatin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The histone fold motif in histones and histone fold TAFs.
Figure 2: Formation of the yTAF61c–yTAF48 complex requires the histone fold.
Figure 3: Formation and specificity of the TAF histone fold complex.
Figure 4: TAF histone fold complex stoichiometry and yTAF48 genetic interactions.

References

  1. 1

    Sterner, D.E. & Berger, S.L. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).

  2. 2

    Hampsey, M. Microbiol. Mol. Biol. Rev. 62, 465–503 (1998).

  3. 3

    Albright, S.R. & Tjian, R. Gene 242, 1–13 (2000).

  4. 4

    Arents, G., Burlingame, R.W., Wang, B.C., Love, W.E. & Moudrianakis, E.N. Proc. Natl. Acad. Sci. USA 88, 10148–10152 (1991).

  5. 5

    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

  6. 6

    Xie, X. et al. Nature 380, 316–322 (1996).

  7. 7

    Hoffmann, A. et al. Nature 380, 356–359 (1996).

  8. 8

    Gangloff, Y.G. et al. Mol. Cell. Biol. 21, 1841–1853 (2001).

  9. 9

    Birck, C. et al. Cell 94, 239–249 (1998).

  10. 10

    Sanders, S.L. & Weil, P.A. J. Biol. Chem. 275, 13895–13900 (2000).

  11. 11

    Reese, J.C., Zhang, Z. & Kurpad, H. J. Biol. Chem. 275, 17391–17398 (2000).

  12. 12

    Gangloff, Y.G. et al. Mol. Cell. Biol. 20, 340–351 (2000).

  13. 13

    Tan, S. Protein Expr. Purif. 21, 224–234. (2001).

  14. 14

    Moqtaderi, Z., Yale, J.D., Struhl, K. & Buratowski, S. Proc. Natl. Acad. Sci. USA 93, 14654–14658 (1996).

  15. 15

    van Holde, K.E. In Chromatin (ed. Rich, A.) 162–168 (Springer-Verlag, New York; 1989).

  16. 16

    Michel, B., Komarnitsky, P. & Buratowski, S. Mol. Cell 2, 663–673 (1998).

  17. 17

    Komarnitsky, P.B., Michel, B. & Buratowski, S. Genes Dev. 13, 2484–2489 (1999).

  18. 18

    Grant, P.A. et al. Cell 94, 45–53 (1998).

  19. 19

    Horikoshi, M., Carey, M.F., Kakidani, H. & Roeder, R.G. Cell 54, 665–669. (1988).

  20. 20

    Burke, T.W. & Kadonaga, J.T. Genes Dev 11, 3020–3031. (1997).

  21. 21

    Luger, K. & Richmond, T.J. Curr. Opin. Struct. Biol. 8, 33–40 (1998).

  22. 22

    Ogryzko, V.V. et al. Cell 94, 35–44 (1998).

  23. 23

    Goodrich, J.A., Hoey, T., Thut, C.J., Admon, A. & Tjian, R. Cell 75, 519–530 (1993).

  24. 24

    Thut, C.J., Chen, J.L., Klemm, R. & Tjian, R. Science 267, 100–104 (1995).

  25. 25

    Lu, H. & Levine, A.J. Proc. Natl. Acad. Sci. USA 92, 5154–5158 (1995).

  26. 26

    Klemm, R.D., Goodrich, J.A., Zhou, S. & Tjian, R. Proc. Natl. Acad. Sci. USA 92, 5788–5792 (1995).

  27. 27

    Parks, T.D., Leuther, K.K., Howard, E.D., Johnston, S.A. & Dougherty, W.G. Anal. Biochem. 216, 413–417 (1994).

  28. 28

    Gill, S.C. & von Hippel, P.H. Anal. Biochem. 182, 319–326 (1989).

  29. 29

    McRorie, D.K. & Voelker, P.J. Self-associating systems in the analytical ultracentrifuge. (Beckman Instruments, Inc., Palo Alto; 1993).

  30. 30

    Cohn, E.J. & Edsall, J.T. Proteins, amino acids and peptides as ions and dipolar ions (Reinhold, New York; 1943).

Download references

Acknowledgements

We thank B. Schlansky and M. Song for technical assistance; C. Brown, J. Reese, B. Simpson and J. Workman for critical reading of the manuscript, and to the gene regulation community at Penn State for stimulating discussions. We are also grateful to T. Richmond, in whose laboratory preliminary studies for this project were initiated. This work was supported by NIH grants to M.F., S.B. and S.T. S.B. is a Leukemia and Lymphoma Society Scholar.

Author information

Correspondence to Song Tan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Selleck, W., Howley, R., Fang, Q. et al. A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat Struct Mol Biol 8, 695–700 (2001) doi:10.1038/90408

Download citation

Further reading