Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for the inhibition of porcine pepsin by Ascaris pepsin inhibitor-3

Abstract

The three-dimensional structures of pepsin inhibitor-3 (PI-3) from Ascaris suum and of the complex between PI-3 and porcine pepsin at 1.75 Å and 2.45 Å resolution, respectively, have revealed the mechanism of aspartic protease inhibition by this unique inhibitor. PI-3 has a new fold consisting of two domains, each comprising an antiparallel β-sheet flanked by an α-helix. In the enzyme–inhibitor complex, the N-terminal β-strand of PI-3 pairs with one strand of the ‘active site flap’ (residues 70–82) of pepsin, thus forming an eight-stranded β-sheet that spans the two proteins. PI-3 has a novel mode of inhibition, using its N-terminal residues to occupy and therefore block the first three binding pockets in pepsin for substrate residues C-terminal to the scissile bond (S1′–S3′). The molecular structure of the pepsin–PI-3 complex suggests new avenues for the rational design of proteinaceous aspartic proteinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural details of PI-3.
Figure 2: Multiple sequence alignment of PI-3 and open reading frames from nematodes.
Figure 3: Structure of the porcine pepsin–PI-3 complex.
Figure 4: Structural basis for the inhibition of pepsin.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wlodawer, A. & Vondrasek, J. Annu. Rev. Biophys. Biomol. Struct. 27, 249–284 (1998).

    Article  CAS  Google Scholar 

  2. Li, M. et al. Nature Struct. Biol. 7, 113–117 (2000).

    Article  CAS  Google Scholar 

  3. Levine, N. D. Nematode parasites of domestic animals and of man. (Burgess Publishing Co., Minneapolis, Minnesota; 1980).

    Google Scholar 

  4. Abu-Erreish, G.M. & Peanasky, R.J. J. Biol. Chem. 249, 1558–1565 (1974).

    CAS  PubMed  Google Scholar 

  5. Martzen, M.R., McMullen, B.A., Smith, N.E., Fujikawa, K. & Peanasky, R.J. Biochemistry 29, 7366–7372 (1990).

    Article  CAS  Google Scholar 

  6. Kageyama, T. Eur. J. Biochem. 253, 804–809 (1998).

    Article  CAS  Google Scholar 

  7. Abu-Erreish, G.M. & Peanasky, R.J. J. Biol. Chem. 249, 1566–1571 (1974).

    CAS  PubMed  Google Scholar 

  8. Valler, M.J., Kay, J., Aoyagi, T. & Dunn, B.M. J. Enzyme Inhibition 1, 77–82 (1985).

    Article  CAS  Google Scholar 

  9. Zalatoris, J.J. Development and partial structural characterization of a recombinant inhibitor of pepsin from Ascaris. Ph.D. Thesis. University of Florida (1999).

  10. Petersen, J.F.W. et al. In Aspartic proteinases: retroviral and cellular enzymes. (ed. James, M.N.G.), 391–395 (Plenum Press, New York; 1998).

    Book  Google Scholar 

  11. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  12. Fujinaga, M. et al. Acta Crystallogr. D 56, 272–279 (2000).

    Article  CAS  Google Scholar 

  13. Schechter, I. & Berger, A. Biochem. Biophys. Res. Comm. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  14. Davies, D.R. Annu. Rev. Biophys. Biophys. Chem. 19, 189–215 (1990).

    Article  CAS  Google Scholar 

  15. Bernstein, N.K. & James, M.N.G. Curr. Opin. Struct. Biol. 9, 684–689 (1999).

    CAS  PubMed  Google Scholar 

  16. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  17. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  18. Cowtan, K. Acta Crystallogr. D 55, 1555–1567 (1999).

    Article  CAS  Google Scholar 

  19. Perrakis, A., Morris, R. & Lamzin, V. S. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  20. McRee, D.E. Practical protein crystallography (Academic Press, San Diego, California; 1993).

    Google Scholar 

  21. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  22. Navaza, J. & Saludjian, P. Methods Enzymol. 276, 581–594 (1997).

    Article  CAS  Google Scholar 

  23. Bricogne, G. Methods Enzymol. 276, 361–423 (1997).

    Article  CAS  Google Scholar 

  24. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  25. Esnouf, R.M. J. Mol. Graph. Model. 15, 132 (1997).

    Article  CAS  Google Scholar 

  26. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  27. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  28. Matthews, B.W. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  29. Morris, A.L., MacArthur, M.W., Hutchinson, E.G. & Thornton, J.M. Proteins 12, 345–364 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Swenson for assisting with the purification of porcine pepsin; M. Carpenter for performing N-terminal sequencing and amino acid composition determinations; L. Burke for performing mass spectrometry analysis; M. Fraser, B. Mark, W. Wolodko and the staff of BioCARS for assistance with the MAD X-ray data collection; P. Roversi, E. Blanc and G. Bricogne for improving electron density maps of the pepsin–PI-3 complex with a developmental version of BUSTER-TNT; and N. Khazanovich Bernstein and M. Fujinaga for helpful discussions. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science. Use of BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources. This work was supported by grants from the Medical Research Council of Canada (MRC) to M.N.G.J. and from the National Institutes of Health to B.M.D. K.K.S.N. was supported by a post-doctoral fellowship from the MRC and a research allowance supplement from the Alberta Heritage Fund for Medical Research. J.F.W.P. was supported by a Killam post-doctoral fellowship at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N.G. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K., Petersen, J., Cherney, M. et al. Structural basis for the inhibition of porcine pepsin by Ascaris pepsin inhibitor-3 . Nat Struct Mol Biol 7, 653–657 (2000). https://doi.org/10.1038/77950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing