Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the DNA binding domain of E. coli SSB bound to ssDNA

Abstract

The structure of the homotetrameric DNA binding domain of the single stranded DNA binding protein from Escherichia coli (Eco SSB) bound to two 35-mer single stranded DNAs was determined to a resolution of 2.8 Å. This structure describes the vast network of interactions that results in the extensive wrapping of single stranded DNA around the SSB tetramer and suggests a structural basis for its various binding modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the SSBc–ssDNA complex.
Figure 2: Schematic diagrams of protein–ssDNA interactions for the 28-mer ssDNA.
Figure 3: Conformational variability within the SSBc–ssDNA complex.
Figure 4: Models for the (SSB)65 and (SSB)35 ssDNA binding modes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Meyer, R.R. & Laine, P.S. Microbiol. Rev. 54, 342–380 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lohman, T.M. & Ferrari, M.E. Annu. Rev. Biochem. 63, 527–570 (1994).

    Article  CAS  Google Scholar 

  3. Wold, M.S. Annu. Rev. Biochem. 66, 61–92 (1997).

    Article  CAS  Google Scholar 

  4. Chase, J.W. & Williams, K.R. Annu. Rev. Biochem. 55, 103–136 (1986).

    Article  CAS  Google Scholar 

  5. Lohman, T.M. & Overman, L.B. J. Biol. Chem. 260, 3594–3603 (1985).

    CAS  PubMed  Google Scholar 

  6. Bujalowski, W. & Lohman, T.M. Biochemistry 25, 7799–7802 (1986).8.

    Article  CAS  Google Scholar 

  7. Chrysogelos, S. & Griffith, J. Proc. Natl. Acad. Sci. USA 79, 5803–5807 (1982).

    Article  CAS  Google Scholar 

  8. Lohman, T.M., Overman, L.B. & Datta, S. J. Mol. Biol. 187, 603–615 (1986).

    Article  CAS  Google Scholar 

  9. Griffith, J.D., Harris, L.D. & Register, J. Cold Spring Harbor Symp. Quant. Biol. 49, 553–559 (1984).

    Article  CAS  Google Scholar 

  10. Lohman, T.M. & Bujalowski, W. Biochemistry 27, 2260–2265 (1988).

    Article  CAS  Google Scholar 

  11. Bujalowski, W. & Lohman, T.M. J. Mol. Biol. 207, 269–288 (1989).

    Article  CAS  Google Scholar 

  12. Raghunathan, S., Ricard, C.S., Lohman, T.M. & Waksman, G. Proc. Natl. Acad. Sci. USA 94, 6652–6657 (1997).

    Article  CAS  Google Scholar 

  13. Curth, U., Greipel, J., Urbanke, C. & Maass, G. Biochemistry 32, 2585–2591 (1993).

    Article  CAS  Google Scholar 

  14. Khamis, M.I., Casas-Finet, J.R., Maki, A.H., Murphy, J.B. & Chase, J.W. J. Biol. Chem. 262, 10938–10945 (1987).

    CAS  PubMed  Google Scholar 

  15. Ferrari, M.E., Fang, J. & Lohman, T.M. Biophys. Chem. 64, 235–251 (1997).

    Article  CAS  Google Scholar 

  16. Merrill, B.M., Williams, K.R., Chase, J.W. & Konigsberg, W.H. J. Biol. Chem. 259, 10850–10856 (1984).

    CAS  PubMed  Google Scholar 

  17. Casas-Finet, J.R., Khamis, M.I., Maki, A.H. & Chase, J.W. FEBS Lett. 220, 347–352 (1987).

    Article  CAS  Google Scholar 

  18. Bayer, I., Fliess, A., Greipel, J., Urbanke, C. & Maass, G. Eur. J. Biochem. 179, 399–404 (1989).

    Article  CAS  Google Scholar 

  19. Schmellik-Sandage, C.S. & Tessman, E.S. J. Bacteriol. 172, 4378–4385 (1990).

    Article  CAS  Google Scholar 

  20. Overman, L.B., Bujalowski, W. & Lohman, T.M. Biochemistry 27, 456–471 (1988).

    Article  CAS  Google Scholar 

  21. Chen, J., Smith, D.L. & Griep, M.A. Protein Sci. 7, 1781–1788 (1998).

    Article  CAS  Google Scholar 

  22. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  23. Terwilliger, T.C., Kim, S.-H. & Eisenberg, D. Acta Crystallogr. A 43, 1–5 (1987).

    Article  Google Scholar 

  24. De La Fortelle, E. & Bricogne, G. Methods Enzymol. 276, 472–493 (1997).

    Article  CAS  Google Scholar 

  25. Abrahams, J.P. & Leslie, A.G.W. Acta Crystallogr. D 52, 32–42 (1996).

    Article  Google Scholar 

  26. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  27. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  28. Brünger, A.T. Nature 355, 472–474 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

G.W. and T.M.L were supported in this work by the NIH. We gratefully acknowledge T. Ho for synthesis and purification of oligodeoxynucleotides, S. Korolev and K. Fütterer for help during data collection, and the staff of beamline BL9.1 of SSRL, beamline X4A of NSLS, and beamline 19ID of APS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy M. Lohman or Gabriel Waksman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghunathan, S., Kozlov, A., Lohman, T. et al. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Mol Biol 7, 648–652 (2000). https://doi.org/10.1038/77943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing