Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase

Abstract

The 62 kDa protein firefly luciferase folds very rapidly upon translation on eukaryotic ribosomes. In contrast, the chaperone-mediated refolding of chemically denatured luciferase occurs with significantly slower kinetics. Here we investigate the structural basis for this difference in folding kinetics. We find that an N-terminal domain of luciferase (residues 1–190) folds co-translationally, followed by rapid formation of native protein upon release of the full-length polypeptide from the ribosome. In contrast sequential domain formation is not observed during in vitro refolding. Discrete unfolding steps, corresponding to domain unfolding, are however observed when the native protein is exposed to increasing concentrations of denaturant. Thus, the co-translational folding reaction bears more similarities to the unfolding reaction than to refolding from denaturant. We propose that co-translational domain formation avoids intramolecular misfolding and may be critical in the folding of multidomain proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A protease-resistant luciferase domain forms co-translationally.
Figure 2: Firefly luciferase unfolds in a domainwise manner upon chemical denaturation.
Figure 3: Identification of the co-translationally folded domain as the 22 kDa N-terminal fragment of luciferase.
Figure 4: The 22 kDa domain is not observed during the chaperone-mediated refolding of denatured luciferase.
Figure 5: Position of different domains in the luciferase crystal structure.

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–30 (1973).

    Article  CAS  Google Scholar 

  2. Creighton, T.E. Protein folding. (W.H. Freeman, New York; 1992).

  3. Jaenicke, R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 30, 3147–3160 (1991).

    Article  CAS  Google Scholar 

  4. Dill, K.A. & Chan, H.S. From Levinthal to pathways to funnels Nature Struct. Biol. 4, 10– 19 (1997).

    Article  CAS  Google Scholar 

  5. Dobson, C.M., Sali, A. & Karplus, M. Protein-folding: a perspective from theory and experiment. Angew. Chem. Int. Edn. Engl. 37, 868– 893 (1998).

    Article  Google Scholar 

  6. Gething, M.-J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 ( 1992).

    Article  CAS  Google Scholar 

  7. Hartl, F.U. Molecular chaperones in cellular protein folding Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  8. Ellis, R.J. The "bio" in biochemistry: protein folding inside and outside the cell. Science 272, 1448–1449 ( 1996).

    Article  CAS  Google Scholar 

  9. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  10. Netzer, W. & Hartl, F. Recombination of protein domains facilitated by co-translational folding in eukaryotes Nature 388 , 343–349 (1997).

    Article  CAS  Google Scholar 

  11. Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes Structure 4, 287–298 (1995).

    Article  Google Scholar 

  12. McNew, J.A. & Goodman, J.M. The targeting and assembly of peroxisomal proteins: some old rules do not apply Trends Biochem. Sci. 21, 54–58 ( 1996).

    Article  CAS  Google Scholar 

  13. deWet, J.R., Wood, K.V., DeLuca, M., Helinsky, D.R. & Subramani, S. Firefly luciferase gene: structure and expression in mammalian cells Mol. Cell. Biol. 7, 725– 737 (1987).

    Article  CAS  Google Scholar 

  14. Nimmesgern, E. & Hartl, F.U. ATP-dependent protein refolding activity in reticulocyte lysate. Evidence for the participation of different chaperone components. FEBS Lett. 331, 25–30 (1993).

    Article  CAS  Google Scholar 

  15. Schumacher, R.J. et al. ATP-Dependent chaperoning activity of reticulocyte lysate J. Biol. Chem. 269, 9493– 9499 (1994).

    CAS  PubMed  Google Scholar 

  16. Freeman, B.C., Myers, M.P., Schumacher, R. & Morimoto, R.I. Identification of a regulatory motif In Hsp70 that affects ATPase activity; substrate-binding and interaction with Hdj-1 EMBO J. 14, 2281–2292 (1995).

    Article  CAS  Google Scholar 

  17. Herbst, R., Schafer, U. & Seckler, R. Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase J. Biol. Chem. 272, 7099–7105 ( 1997).

    Article  CAS  Google Scholar 

  18. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones Nature 370, 111– 117 (1994).

    Article  CAS  Google Scholar 

  19. Kolb, V.A., Makeyev, E.V. & Spirin, A.S. Folding of firefly luciferase during translation in a cell-free system EMBO J. 13, 3631– 3637 (1994).

    Article  CAS  Google Scholar 

  20. Schneider, C. et al. Pharmacological shifting of a balance between protein refolding and degradation mediated by Hsp90 Proc. Natl. Acad. Sci. USA 93, 14536–14541 (1996).

    Article  CAS  Google Scholar 

  21. Garel, J.R. In Protein folding (ed. Creighton, T.E.) 405–454 (W.H. Freeman, New York; 1992).

  22. Taubes, G. Misfolding the way to disease Science 271, 1493–1495 (1996).

    Article  CAS  Google Scholar 

  23. Mitraki, A., Fane, B., Haasepettingell, C., Sturtevant, J. & King, J. Global suppression of protein folding defects and inclusion body formation Science 253, 54–58 (1991).

    Article  CAS  Google Scholar 

  24. Qu, B.H. & Thomas, P.J. Alteration of the cystic-fibrosis transmembrane conductance regulator folding pathway: effects of the delta-F508 mutation on the thermodynamic stability and folding yield of NBD1. J. Biol. Chem. 271, 7261–7264 (1996).

    Article  CAS  Google Scholar 

  25. Lui, M., Tempst, P. & Erdjument-Bromage, H. Methodical analysis of protein–nitrocellulose interactions to design a refined digestion protocol. Anal. Biochem. 241, 156–166 ( 1996).

    Article  CAS  Google Scholar 

  26. Elicone, C., Lui, M., Geromanos, S., Erdjument-Bromage, H. & Tempst, P. Microbore reversed-phase high-performance liquid chromatographic purification of peptides for combined chemical sequencing / laser-desorption mass spectrometric analysis. J. Chromatogr 676, 121–137 (1994).

    Article  CAS  Google Scholar 

  27. Erdjument-Bromage, H., Lui, M., Sabatini, D.M., Snyder, S.H. & Tempst, P. High-sensitivity sequencing of large proteins: partial structure of the rapamycin-FKBP12 target. Protein Sci. 3, 2435–2446 (1994).

    Article  CAS  Google Scholar 

  28. Tempst, P., et al. In Mass spectrometry in the biological sciences. (eds Burlingame, A.L. & Carr, S.A.) 105–133 (Humana Press, Totowa, New Jersey; 1996).

    Book  Google Scholar 

Download references

Acknowledgements

J.F. is supported by an NIH grant. P.T. is supported by an NSF grant and an NCI grant to the Sloan-Kettering Structural Chemistry Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Frydman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frydman, J., Erdjument-Bromage, H., Tempst, P. et al. Co-translational domain folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Mol Biol 6, 697–705 (1999). https://doi.org/10.1038/10754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing