Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Profilin binds proline-rich ligands in two distinct amide backbone orientations

Abstract

The actin regulatory protein profilin is targeted to specific cellular regions through interactions with highly proline-rich motifs embedded within its binding partners. New X-ray crystallographic results demonstrate that profilin, like SH3 domains, can bind proline-rich ligands in two distinct amide backbone orientations. By further analogy with SH3 domains, these data suggest that non-proline residues in profilin ligands may dictate the polarity and register of binding, and the detailed organization of the assemblies involving profilin. This degeneracy may be a general feature of modules that bind proline-rich ligands, including WW and EVH1 domains, and has implications for the assembly and activity of macromolecular complexes involved in signaling and the regulation of the actin cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proline-rich sequences in proteins implicated in profilin binding through genetic and/or biochemical studies.
Figure 2: Simulated annealing omit maps of the HPP–L-Pro10-iodo-tyrosine complex structure and comparison with the HPP–L-Pro10 structure.
Figure 3: Electron density of the HMC-L-Pro15 peptide and the asymmetric unit of the HPP–HMC-L-Pro15 complex.
Figure 4: Detailed comparison of the two peptide binding polarities.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kuriyan, J. & Cowburn, D. Ann. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    Article  CAS  Google Scholar 

  2. Sudol, M. Prog. Biophys. Molec. Biol. 65, 113–132 (1996).

    Article  CAS  Google Scholar 

  3. Yu, H. et al. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  4. Lim, W.A., Richards, F.M. & Fox, R.O. Nature 372, 375–379 (1994).

    Article  CAS  Google Scholar 

  5. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  6. Macias, M.I. et al. Nature 382, 646–649 (1996).

    Article  CAS  Google Scholar 

  7. Mahoney, N.M., Janmey, P.A. & Almo, S.C. Nature Struct. Biol. 4, 953–960 (1997).

    Article  CAS  Google Scholar 

  8. Haarer, B.K. et al. J. Cell Biol. 110, 105–114 (1990).

    Article  CAS  Google Scholar 

  9. Balasubramanian, M.K., Hirani, B.R., Burke, J.D. & Gould, K.L. J. Cell Biol. 125, 1289–1301 (1994).

    Article  CAS  Google Scholar 

  10. Cooley, L., Verheyen, E. & Ayers, K. Cell 69, 173–184 (1992).

    Article  CAS  Google Scholar 

  11. Theriot, J.A. & Mitchison, T.J. Cell 75, 835–838 (1993).

    Article  CAS  Google Scholar 

  12. Goldschmidt-Clermont, P.J. et al. Mol. Biol. Cell. 3, 1015–1024 (1992).

    Article  CAS  Google Scholar 

  13. Carlier, M.F., Jean, C., Rieger, K.J., Lenfant, M. & Pantaloni, D. Proc. Natl. Acad. Sci. USA. 90, 5034–5038 (1993).

    Article  CAS  Google Scholar 

  14. Pantaloni, D. & Carlier, M.F. Cell, 75, 1007–1013 (1993).

    Article  CAS  Google Scholar 

  15. Gertler, F.B., Niebuhr, K. Reinhard, M., Wehland, J. & Soriano, P. Cell 87, 227–239 (1996).

    Article  CAS  Google Scholar 

  16. Chakraboty, T. et al. EMBO J. 14, 1314–1321 (1995).

    Article  Google Scholar 

  17. Reinhard, M. et al. EMBO J. 14, 1583–1589 (1995).

    Article  CAS  Google Scholar 

  18. Evangalista, M. et al. Science. 276, 118–122 (1997).

    Article  Google Scholar 

  19. Chang, F., Drubin, D. & Nurse, P. J. Cell Biol. 137, 169–182 (1997).

    Article  CAS  Google Scholar 

  20. Watanabe N. et al. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  Google Scholar 

  21. Petersen, J., Weilguny, D., Egel, R. & Nielsen, O. Mol. Cell. Biol. 15, 3697–3707 (1995).

    Article  CAS  Google Scholar 

  22. Castrillon, D.H. & Wasserman, S.A. Development 120, 3367–3377 (1994).

    CAS  PubMed  Google Scholar 

  23. Marhoul, J.F. & Adams, T.H. Genetics 139, 537–547 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Manseau, L., Calley, J. & Phan, H. Development 122, 2109–2116 (1996).

    CAS  PubMed  Google Scholar 

  25. Niebuhr, K. et al. EMBO J. 16, 5433–5444 (1997).

    Article  CAS  Google Scholar 

  26. Sudol, M. Trends Biochem. Sci. 21, 161–163 (1996).

    Article  CAS  Google Scholar 

  27. Ermakova, K.S. et al. J. Biol. Chem. 272, 32869–32877 (1997).

    Article  Google Scholar 

  28. Chan, D.C., Bedford, M.T. & Leder, P. EMBO J. 15, 1045–1054 (1996).

    Article  CAS  Google Scholar 

  29. Kabsch, W. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. X-PLOR (version 3.1) manual. (Yale University, New Haven, Connecticut; 1993).

    Google Scholar 

  31. Evans, S.V. J. Mol. Graphics. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by awards from the National Institutes of Health to S.C.A. N.M.M. was supported by a training grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahoney, N., Rozwarski, D., Fedorov, E. et al. Profilin binds proline-rich ligands in two distinct amide backbone orientations. Nat Struct Mol Biol 6, 666–671 (1999). https://doi.org/10.1038/10722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing