Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the most conserved internal loop in SRP RNA

Abstract

The signal recognition particle (SRP) directs translating ribosomes to the protein translocation apparatus of endoplasmic reticulum (ER) membrane or the bacterial plasma membrane. The SRP is universally conserved, and in prokaryotes consists of two essential subunits, SRP RNA and SRP54, the latter of which binds to signal sequences on the nascent protein chains. Here we describe the solution NMR structure of a 28-mer RNA composing the most conserved part of SRP RNA to which SRP54 binds. Central to this function is a six-nucleotide internal loop that assumes a novel Mg2+-dependent structure with unusual cross-strand interactions; besides a cross-strand A/A stack, two guanines form hydrogen bonds with opposite-strand phosphates. The structure completely explains the phylogenetic conservation of the loop bases, underlining its importance for SRP54 binding and SRP function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Secondary structure of E. coli 4.5S RNA and its interaction site with Ffh (shown in gray as two-domain model).
Figure 2: NMR spectra of exchangeable protons of the SRP 28-mer.
Figure 3: Portion of the 2D NOE spectrum in D2O (mixing time = 200 ms) in the presence of Mg2+ showing aromatic to anomeric NOEs.
Figure 4: The NMR structure of the SRP 28-mer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Walter, P. & Johnson, A.E. Ann. Rev. Cell Biol. 10, 87–119 (1994).

    Article  CAS  Google Scholar 

  2. Andrews, D.W., Walter, P. & Ottensmeyer, F.P. EMBO J. 6, 3471– 3477 (1987).

    Article  CAS  Google Scholar 

  3. Poritz, M.A., Strub, K. & Walter, P. Cell 55, 4–6 (1988).

    Article  CAS  Google Scholar 

  4. Larsen, N., Samuelsson, T. & Zwieb, C. Nucleic Acids Res. 26, 177– 178 (1998).

    Article  CAS  Google Scholar 

  5. Bernstein, H.D., Zopf, D., Freymann, D.M. & Walter, P. Proc. Natl. Acad. Sci. USA 90, 5229–5233 ( 1993).

    Article  CAS  Google Scholar 

  6. Ulbrandt, N.D., Newitt, J.A. & Bernstein, H.D. Cell 88, 187– 196 (1997).

    Article  CAS  Google Scholar 

  7. Powers, T. & Walter, P. EMBO J. 16, 4880–4886 (1997).

    Article  CAS  Google Scholar 

  8. Freymann, D.M., Keenan, R.J., Stroud, R. & Walter, P. Nature 385, 361–364 (1997).

    Article  CAS  Google Scholar 

  9. Keenan, R.J., Freymann, D.M., Stroud, R. & Walter, P. Cell 94, 181–191 ( 1998).

    Article  CAS  Google Scholar 

  10. Zheng, N. & Gierasch, L.M. Mol. Cell 1, 79–87 (1997).

    Article  CAS  Google Scholar 

  11. Schmitz, U. et al. RNA 2, 1213–1227 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lukavsky, P., Billeci, T.M., James, T.L. & Schmitz, U. In ACS Symp. Ser.: Molecular modeling of nucleic acids Vol. 682 (eds SantaLucia, J. & Neocles, L.) 122–149 (American Chemical Society; 1997).

    Book  Google Scholar 

  13. Borgias, B.A., Gochin, M., Kerwood, D.J. & James, T.L. Prog. Nucl. Magn. Res. Spectrosc. 22, 83– 100 (1990).

    Article  CAS  Google Scholar 

  14. Puglisi, E.V., Green, R., Noller, H.F. & Puglisi, J.D. Nature Struct. Biol. 4, 775-–778 (1997 ).

    Google Scholar 

  15. Puglisi, E.V. & Puglisi, J.D. Nature Struct. Biol. 5, 1033–1036 (1998).

    Article  CAS  Google Scholar 

  16. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H.M. & Pardi, A. J. Mol. Biol. 264, 968– 980 (1997).

    Article  Google Scholar 

  17. Legault, P. & Pardi, A. J. Magn. Res. 103, 82–86 (1994).

    Article  CAS  Google Scholar 

  18. Szewczak, A.A. & Moore, P.B. J. Mol. Biol. 247, 81–98 ( 1995).

    Article  CAS  Google Scholar 

  19. Lentzen, G., Moine, H., Ehresmann, B. & Wintermeyer, W. RNA 2, 244–253 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dallas, A. & Moore, P.B. Structure 5, 1639–1653 (1997).

    Article  CAS  Google Scholar 

  21. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Nucleic Acid Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  22. Smallcombe, S.H. J. Am. Chem. Soc. 115, 4776–4785 (1993).

    Article  CAS  Google Scholar 

  23. Varani, G. & Tinoco, I. Q. Rev. Biophys. 24, 479–532 (1991).

    Article  CAS  Google Scholar 

  24. Liu, H., Tonelli, M. & James, T.L. J. Magn. Res. 111, 85– 89 (1996).

    Article  CAS  Google Scholar 

  25. Liu, H., Spielmann, H.P., Ulyanov, N.B., Wemmer, D.E. & James, T.L. J. Biomol. NMR 6, 390–402 (1995).

    Article  CAS  Google Scholar 

  26. Cornell, W., Cieplak, P., Bayly, C.I., Gould, I.R. & Kollman, P.A. J. Am. Chem. Soc. 118, 2309 –2309 (1996).

    Article  CAS  Google Scholar 

  27. Lavery, R. & Sklenar, H. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an NIH grant to T.L.J. and an NSF grant to U.S. The NMR instrument was purchased with funds from an NIH grant. P.W. is an investigator of the Howard Hughes Medical Institute. We acknowledge the UCSF Computer Graphics laboratory, also supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, U., James, T., Lukavsky, P. et al. Structure of the most conserved internal loop in SRP RNA. Nat Struct Mol Biol 6, 634–638 (1999). https://doi.org/10.1038/10683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing